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1 - What is reinforcement learning?
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Different types of machine learning depending on the feedback

e Supervised learning: the correct answer is provided to the system.
e Unsupervised learning: no answer is given to the system.

e Reinforcement learning: an estimation of the correctness of the answer is provided.

Supervised Learning Unsupervised Learning Reinforcement Learning

Training

Source: https://www.analyticsvidhya.com/blog/2016/12/artificial-intelligence-demystified/
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Many faces of RL
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http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

A brief history of reinforcement learning

o Early 20th century: animal behavior, psychology, operant
conditioning

= |van Pavlov, Edward Thorndike, B.F. Skinner

e 1950s: optimal control, Markov Decision Process, dynamic
programming

= Richard Bellman, Ronald Howard

e 1970s: trial-and-error learning

= Marvin Minsky, Harry Klopf, Robert Rescorla, Allan Wagner

e 1980s: temporal difference learning, Q-learning

= Richard Sutton, Andrew Barto, Christopher Watkins, Peter
Dayan

e 2013-now: deep reinforcement learning
= Deepmind (Mnih, Silver, Graves, Hassabis...)

= OpenAl (Sutskever, Schulman...)
= Berkeley (Sergey Levine)

See http://www.incompleteideas.net/book/ebook/node12.html 5/46


http://www.incompleteideas.net/book/ebook/node12.html

The RL bible

Reinforcement
Learning /

An Introduction
second edition

Sutton and Barto (1998) . Reinforcement Learning: An Introduction. MIT Press.

Sutton and Barto (2017) . Reinforcement Learning: An Introduction. MIT Press. 2nd edition.

http://incompleteideas.net/sutton/book/the-book.htm

6 /46


http://incompleteideas.net/sutton/book/the-book.html

Operant conditioning

Reinforcement learning comes from animal behavior studies,
especially operant conditioning / instrumental learning.

Thorndike's Law of Effect (1874-1949) suggested that
behaviors followed by satisfying consequences tend to be
repeated and those that produce unpleasant consequences
are less likely to be repeated.

Positive reinforcements (rewards) or negative reinforcements

(punishments) can be used to modify behavior (Skinner’s box,
1936).

This form of learning applies to all animals, including humans:

= Training (animals, children...)

= Addiction, economics, gambling, psychological
manipulation...

Behaviorism: only behavior matters, not mental states.
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Operant conditioning

Video unavailable
Watch on YouTube



http://www.youtube.com/watch?v=y-g2OmRXb0g
https://www.youtube.com/

Trial and error learning

e The key concept of RL is trial and error learning.

e The agent (rat, robot, algorithm) tries out an action and observes the outcome.
= If the outcome is positive (reward), the action is reinforced (more likely to occur again).
= If the outcome is negative (punishment), the action will be avoided.

o After enough interactions, the agent has learned which action to perform in a given situation.

9/46



Trial and error learning

e RL is merely a formalization of the trial-and-error learning paradigm.
e The agent has to explore its environment via trial-and-error in order to gain knowledge.

e The biggest issue with this approach is that exploring large action spaces might necessitate a lot of trials
(sample complexity).

e The modern techniques we will see in this course try to reduce the sample complexity.
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The agent-environment interface

e The agent and the environment interact at discrete
time steps: t=0, 1, ...

action ¢ The agent observes its state attimet: s; € S
ilf

e |t produces an action at time t, depending on the
available actions in the current state: a; € A(s;)

e It receives areward according to this action at time
Source: Sutton and Barto (1998). t+1: T't+1 - R

e |t updates its state: s;11 € S

e The behavior of the agent is therefore is a sequence of state-action-reward-state (s, a,r, 3’) transitions.

rl'+l rl'+2 r1’+3
® /?;;;:\\ a @ f/E;;:;\ a ® E;P+3 i
t U t+1 U I+2

 Sequences T = (sg,ag, 1, 81,01, ..., ST) are called episodes, trajectories, histories or rollouts.
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The agent-environment interface

reward

Source: David Silver. http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
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Environment and agent states

P R e The state s; can relate to:

state A1/~ " w1 51| - action

AL () = the environment state, i.e. all information
St A\ = % external to the agent (position of objects, other
agents, etc).

\k ’y
¥
reward | r
:

Source: David Silver. | | 0 = f(St)
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

= the internal state, information about the agent
itself (needs, joint positions, etc).

e Generally, the state represents all the information
necessary to solve the task.

e The agent generally has no access to the states
directly, but to observations o;:

e Example: camera inputs do not contain all the necessary information such as the agent’s position.
e Imperfect information define partially observable problems.
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Policy

 What we search in RL is the optimal policy: which action a should the agent perform in a state s?

e The policy m maps states into actions.

KN o |tis defined as a probability distribution over states and
g g [ 5y _seton actions:

T:SxA— P(S)
(s,a) — w(s,a) = P(a; = a|s; = s)

o 7($,a) is the probability of selecting the action a in s. We
have of course:

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html E 77(37 Cl,) =1
acA(s)

e Policies can be probabilistic / stochastic. Deterministic policies select a single action a*in s:

lifa =a"

ms,a) = 0if a # a'
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Reward function

=SSN e The only teaching signal in RL is the reward
= H function.

state A7 7/~ " ‘_ P y action

sy AN W) 4 a,  Thereward is a scalar value 7, 1 provided to the

system after each transition (st, Qs st+1).

e Rewards can also be probabilistic (casino).

e The mathematical expectation of these rewards
defines the expected reward of a transition:

r(s,a,s) = E¢[rea]s: = 5,00 = a, 8411 = 5]

e Rewards can be:

Source: David Silver.

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html = dense: a non-zero value is prowded after each

time step (easy).

= sparse: non-zero rewards are given very
seldom (difficult).
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Returns

P e e The goal of the agent is to find a policy that
te Ld3 LTSN scton maximizes the sum of future rewards at each
AN TN T X — ] timestep.
S; . S a,
\ Pa e The discounted sum of future rewards is called the

return:

reward r;

o0
k
Ry = E :’Y Tt+k+1
k=0

rt+1 rt+2 lrf.“+3
t t+1 t+2

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

e Rewards can be delayed w.r.t to an action: we care about all future rewards to select an action, not only
the immediate ones.

e Example: in chess, the first moves are as important as the last ones in order to win, but they do not
receive reward.
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Value functions

Ao N e The expected return in a state s is called its value:

action

. ;', -:;___b_{:: a, Vﬂ-(s) —

that state.

average.

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

o (Rt‘st — 8)

e The value of a state defines how good it is to be in

o |f a state has a high value, it means we will be able
to collect a lot of rewards on the long term and on

e Value functions are central to RL: if we know the value of all states, we can infer the policy.

e The optimal action is the one that leads to the state with the highest value.

o Most RL methods deal with estimating the value function from experience (trial and error).
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Simple maze

Start

Goal: finding the exit as soon as possible.

o States: position in the maze (1, 2, 3...).
e Actions: up, down, left, right.

e Rewards: -1 for each step until the exit.

Goal
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Simple maze

Start

e The value of each state indicates how good it is to be in that state.

-21

e |t can be learned by trial-and-error given a policy.

Goal

19/46



Simple maze

Start

 When the value of all states is known, we can infer the optimal policy by choosing actions leading to the
states with the highest value.

Note: the story is actually much more complicated...
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Supervised learning

e Correct input/output samples are provided by a
superviser (training set).

e Learning is driven by prediction errors, the

difference between the prediction and the target.

e Feedback is instantaneous: the target is
immediately known.

e Time does not matter: training samples are
randomly sampled from the training set.

Training
set

'

Learning
algorithm

12

X —»\ h | predicted y

—— (predicted price)

_\u

(living area of
house.) of house)

Reinforcement learning

e Behavior is acquired through trial and error, no
supervision.

e Reinforcements (rewards or punishments) change
the probability of selecting particular actions.

e Feedback is delayed: which action caused the
reward? Credit assignment.

e Time matters: as behavior gets better, the observed
data changes.

internal state “reward

§ ; /3 ! environment
S~ ;ﬂ?ll“-flP

. action § L SA—
N>

5_&
learning rate .
inverse temperature p

discount rate y

observation
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2 - Applications of RL



Optimal control

Pendulum

Goal: maintaining the pendulum vertical.

~

e States: angle and velocity of the pendulum.
e Actions: left and right torques.
e Rewards: cosine distance to the vertical.

Source: https://keras.io/examples/rl/ddpg_pendulum/
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Optimal control
Cartpole

Goal: maintaining the pole vertical by moving the cart left or right.

e States: position and speed of the cart, angle and velocity of the pole.
e Actions: left and right movements.
 Rewards: +1 for each step until failure.

Source: https://towardsdatascience.com/cartpole-introduction-to-reinforcement-learning-ed0eb5b 58288
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Optimal control

P Cart-Pole Swing:t
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https://www.youtube.com/watch?v=XiigTGKZfks

Board games (Backgammon, Chess, Go, etc)

TD-Gammon (Tesauro, 1992) was one of the first Al to beat human experts at a complex game,
Backgammon.

= white pieces move predicted probability
24023 22 N WG 18 T 16 15 1N of winning, Vi"

counterclockwise
TD error, V1=V, —~é
1 2 3 4 5 6 B ERCEIEE black pieces
move clockwise
|

e States: board configurations.

hidden units (40-80)

backgammon position (198 input units)

e Actions: piece displacements.

 Rewards: +1 for game won, -1 for game lost, 0 otherwise. sparse rewards
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Deep Reinforcement Learning (DRL)

Environment

action

parameter 0
| Observe state

e Classical tabular RL was limited to toy problems, with few states and actions.

e |tis only when coupled with deep neural networks that interesting applications of RL became possible.

e Deepmind (now Google) started the deep RL hype in 2013 by learning to solve 50+ Atari games with a
CNN.
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Atari games

e States:
&% atari- DQN reinforcement learning experiments

. B

pixel frames.

e Actions:

button presses.

e Rewards:

34
11300

score increases.

PLAYEPR mmmm
EmERY

Mnih et al. (2013) Playing Atari with Deep Reinforcement Learning. NIPS. http://arxiv.org/abs/1312.5602 08 / 46


https://www.youtube.com/watch?v=rQIShnTz1kU
http://arxiv.org/abs/1312.5602

Atari games
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Mnih et al. (2013) Playing Atari with Deep Reinforcement Learning. NIPS. http://arxiv.org/abs/1312.5602
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Simulated cars

e States:

pixel frames.

e Actions:

direction, speed.

e Rewards:

linear velocity (+),
crashes (-)

@ Asynchronous Methods for Deep Reinforcement Learning: TORCS
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https://www.youtube.com/watch?v=0xo1Ldx3L5Q

Parkour

o States:

joint positions.

e Actions:

joint displacements.

e Rewards:

linear velocity (+),
crashes (-)

DeepMind Learns Parkour
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https://www.youtube.com/watch?v=faDKMMwOS2Q

AlphaGo

2 b
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S S

Human expert positions Self-play positions

e AlphaGo was able to beat Lee Sedol in 2016, 19 times World champion.
e It relies on human knowledge to bootstrap a RL agent (supervised learning).

e The RL agent discovers new strategies by using self-play: during the games against Lee Sedol, it was able
to use novel moves which were never played before and surprised its opponent.

e Training took several weeks on 1202 CPUs and 176 GPUs.

Silver et al. (2016) Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484-489, arXiv:1712.01815 320 /46



AlphaGo

AlphaGo Official Trailer
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https://www.youtube.com/watch?v=8tq1C8spV_g

Process control

High PUE ML Control On ML Control Off

! 3

Low PUE

Source: https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-
40/

e 40% reduction of energy consumption when using deep RL to control the cooling of Google’'s datacenters.
o States: sensors (temperature, pump speeds).
e Actions: 120 output variables (fans, windows).

 Rewards: decrease in energy consumption
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Magnetic control of tokamak plasmas
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Degrave et al. (2022) Magnetic control of tokamak plasmas through deep reinforcement learning. Nature, 602(7897). doi/10.1038/s41586-021-04301-9
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Chip design

PrefixRL Agent PrefixRL Environment
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t O N
Circuit
B add (3,2) »
Synthesis

|
- A(area)

Q-network A(delay)

(3,3) (2,2) (1,1) (0,0) (3,3) (2,2) (1,1) (0,0)

Circuit

;‘ (1.0 Synthesis >

(3,0) (2,0)

Representation .0 St+1 (area, delay);, 4

Roy et al. (2022) PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning. doi:10.1109/DAC18074.2021.9586094 36 /46



Real robotics

e States:

pixel frames.

e Actions:

joint movements.

e Rewards:

successful
grasping.

@ Learning hand-eye coordination for robotic grasping

3 *:? -
—-_‘ ‘

>

l "
‘ ?

b
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https://www.youtube.com/watch?v=l8zKZLqkfII

Learning dexterity

o States:
@ Learning Dexterity

pixel frames, joint
position.

e Actions:

joint movements.

e Rewards:

shape obtained.
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https://www.youtube.com/watch?v=jwSbzNHGflM

Autonomous driving

o States:

@.ﬂ zearning,to drive in a day

pixel frames.

s

e Actions:

direction, speed.

e Rewards:

time before humans
take control.

https://wayve.ai/blog/learning-to-drive-in-a-day-with-reinforcement-learning
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Dota2 (OpenAl)

OpenAl Five

<}

._ \ ‘l"*;

e 128,000 CPU cores and 256 Nvidia P100 GPUs on Google Cloud for 10 months ($25,000 per day)...



https://www.youtube.com/watch?v=eHipy_j29Xw

Starcraft Il (AlphaStar)
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Source: https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
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ChatGPT

Step 1

Collect demonstration data
and train a supervised policy.

A prompt is
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

~
L

Explain reinforcement

learning to a 6 year old.

&

VA4

We give treats and

punishments to teach...

Step 2

Collect comparison data and

train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model.

~
L

Explain reinforcement

learning to a 6 year old.

o B

In reinforcement Explain rewards...

learning, the
agent is...

C/ O

In machine We give treats and
learning... punishments to

teach...

https://openai.com/blog/chatgpt/

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

e

Write a story
about otters.

Once upon atime...
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Take home messages

e Deep RL is gaining a lot of importance in Al research.

= Lots of applications in control: video games, robotics, industrial applications...

= |t may be Al's best shot at producing intelligent behavior, as it does not rely on annotated data.

e A lot of problems have to be solved before becoming as mainstream as deep learning.

Sample complexity is often prohibitive.

Energy consumption and computing power simply crazy (AlphaGo: 1 MW, Dota2: 800 petaflop/s-
days)

The correct reward function is hard to design, ethical aspects. (inverse RL)
Hard to incorporate expert knowledge. (model-based RL)

Learns single tasks, does not generalize (hierarchical RL, meta-learning)
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Plan of the course

1. Introduction

1. Applications
2. Crash course in statistics
2. Basic RL

1. Bandits

2. Markov Decision Process
3. Dynamic programming

4. Monte-Carlo control

5. Temporal difference,
Eligibility traces

6. Function approximation

/. Deep learning

3. Model-free RL

1. Deep Q-networks
2. Beyond DQN

3. Policy gradient,
REINFORCE

4. Advantage Actor-critic
(A3C)

5. Deterministic policy
gradient (DDPG)

6. Natural gradients (TRPO,
PPO)

/. Maximum Entropy RL
(SAC)

4. Model-based RL
1. Principle, Dyna-Q, MPC
2. Learned World models
3. AlphaGo

4. Successor representations
5. Outlook

1. Hierarchical RL
2. Inverse RL

3. Meta RL

4. Offline RL
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Suggested reading

o Sutton and Barto (1998, 2017). Reinforcement Learning: An Introduction. MIT Press.

http://incompleteideas.net/sutton/book/the-book.html

o Szepesvari (2010). Algorithms for Reinforcement Learning. Morgan and Claypool.

http://www.ualberta.ca/~szepesva/papers/RLAlgsINMDPs.pdf

e CS294 course of Sergey Levine at Berkeley.

http://rll.berkeley.edu/deepricourse/

e Reinforcement Learning course by David Silver at UCL.

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
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