
Deep Reinforcement Learning
Introduction

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1 / 46

1 - What is reinforcement learning?

2 / 46

Different types of machine learning depending on the feedback
Supervised learning: the correct answer is provided to the system.

Unsupervised learning: no answer is given to the system.

Reinforcement learning: an estimation of the correctness of the answer is provided.

Source: https://www.analyticsvidhya.com/blog/2016/12/artificial-intelligence-demystified/

3 / 46

https://www.analyticsvidhya.com/blog/2016/12/artificial-intelligence-demystified/

Many faces of RL

Source: David Silver. http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

4 / 46

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

A brief history of reinforcement learning
Early 20th century: animal behavior, psychology, operant
conditioning

Ivan Pavlov, Edward Thorndike, B.F. Skinner

1950s: optimal control, Markov Decision Process, dynamic
programming

Richard Bellman, Ronald Howard

1970s: trial-and-error learning

Marvin Minsky, Harry Klopf, Robert Rescorla, Allan Wagner

1980s: temporal difference learning, Q-learning

Richard Sutton, Andrew Barto, Christopher Watkins, Peter
Dayan

2013-now: deep reinforcement learning

Deepmind (Mnih, Silver, Graves, Hassabis…)

OpenAI (Sutskever, Schulman…)

Berkeley (Sergey Levine)

See http://www.incompleteideas.net/book/ebook/node12.html 5 / 46

http://www.incompleteideas.net/book/ebook/node12.html

The RL bible

Sutton and Barto () . Reinforcement Learning: An Introduction. MIT Press.

Sutton and Barto () . Reinforcement Learning: An Introduction. MIT Press. 2nd edition.

1998

2017

http://incompleteideas.net/sutton/book/the-book.html

6 / 46

http://incompleteideas.net/sutton/book/the-book.html

Operant conditioning
Reinforcement learning comes from animal behavior studies,
especially operant conditioning / instrumental learning.

Thorndike’s Law of Effect (1874–1949) suggested that
behaviors followed by satisfying consequences tend to be
repeated and those that produce unpleasant consequences
are less likely to be repeated.

Positive reinforcements (rewards) or negative reinforcements
(punishments) can be used to modify behavior (Skinner’s box,
1936).

This form of learning applies to all animals, including humans:

Training (animals, children…)

Addiction, economics, gambling, psychological
manipulation…

Behaviorism: only behavior matters, not mental states.

 ; https://en.wikipedia.org/wiki/Edward_Thorndike https://en.wikipedia.org/wiki/B._F._Skinner 7 / 46

https://en.wikipedia.org/wiki/Edward_Thorndike
https://en.wikipedia.org/wiki/B._F._Skinner

Operant conditioning

Video unavailable
Watch on YouTube

8 / 46

http://www.youtube.com/watch?v=y-g2OmRXb0g
https://www.youtube.com/

Trial and error learning
The key concept of RL is trial and error learning.

The agent (rat, robot, algorithm) tries out an action and observes the outcome.

If the outcome is positive (reward), the action is reinforced (more likely to occur again).

If the outcome is negative (punishment), the action will be avoided.

After enough interactions, the agent has learned which action to perform in a given situation.

9 / 46

Trial and error learning

RL is merely a formalization of the trial-and-error learning paradigm.

The agent has to explore its environment via trial-and-error in order to gain knowledge.

The biggest issue with this approach is that exploring large action spaces might necessitate a lot of trials
(sample complexity).

The modern techniques we will see in this course try to reduce the sample complexity.

10 / 46

The agent-environment interface
The agent and the environment interact at discrete
time steps: =0, 1, …

The agent observes its state at time t:

It produces an action at time t, depending on the
available actions in the current state:

It receives a reward according to this action at time
t+1:

It updates its state:

The behavior of the agent is therefore is a sequence of state-action-reward-state transitions.

Sequences are called episodes, trajectories, histories or rollouts.

Source: Sutton and Barto (1998).

t

s ∈t S

a ∈t A(s)t

r ∈t+1 ℜ

s ∈t+1 S

(s, a, r, s)′

τ = (s , a , r , s , a , … , s)0 0 1 1 1 T

11 / 46

The agent-environment interface

Source: David Silver. http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

12 / 46

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Environment and agent states
The state can relate to:

the environment state, i.e. all information
external to the agent (position of objects, other
agents, etc).

the internal state, information about the agent
itself (needs, joint positions, etc).

Generally, the state represents all the information
necessary to solve the task.

The agent generally has no access to the states
directly, but to observations :

Example: camera inputs do not contain all the necessary information such as the agent’s position.

Imperfect information define partially observable problems.

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

s t

o t

o =t f(s)t

13 / 46

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Policy
What we search in RL is the optimal policy: which action should the agent perform in a state ?

The policy maps states into actions.

It is defined as a probability distribution over states and
actions:

 is the probability of selecting the action in . We
have of course:

Policies can be probabilistic / stochastic. Deterministic policies select a single action in :

a s

π

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

π : S × A → P (S)

(s, a) → π(s, a) = P (a = a∣s = s)t t

π(s, a) a s

 π(s, a) =
a∈A(s)

∑ 1

a∗ s

π(s, a) = {1 if a = a∗

0 if a = a ∗

14 / 46

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Reward function
The only teaching signal in RL is the reward
function.

The reward is a scalar value provided to the
system after each transition .

Rewards can also be probabilistic (casino).

The mathematical expectation of these rewards
defines the expected reward of a transition:

Rewards can be:

dense: a non-zero value is provided after each
time step (easy).

sparse: non-zero rewards are given very
seldom (difficult).

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

r t+1

(s , a , s)t t t+1

r(s, a, s) =′ E [r ∣s =t t+1 t s, a =t a, s =t+1 s]′

15 / 46

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Returns
The goal of the agent is to find a policy that
maximizes the sum of future rewards at each
timestep.

The discounted sum of future rewards is called the
return:

Rewards can be delayed w.r.t to an action: we care about all future rewards to select an action, not only
the immediate ones.

Example: in chess, the first moves are as important as the last ones in order to win, but they do not
receive reward.

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

R =t γ r

k=0

∑
∞

k
t+k+1

16 / 46

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Value functions
The expected return in a state is called its value:

The value of a state defines how good it is to be in
that state.

If a state has a high value, it means we will be able
to collect a lot of rewards on the long term and on
average.

Value functions are central to RL: if we know the value of all states, we can infer the policy.

The optimal action is the one that leads to the state with the highest value.

Most RL methods deal with estimating the value function from experience (trial and error).

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

s

V (s) =π E (R ∣s =π t t s)

17 / 46

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Simple maze

Goal: finding the exit as soon as possible.

States: position in the maze (1, 2, 3…).

Actions: up, down, left, right.

Rewards: -1 for each step until the exit.

18 / 46

Simple maze

The value of each state indicates how good it is to be in that state.

It can be learned by trial-and-error given a policy.

19 / 46

Simple maze

When the value of all states is known, we can infer the optimal policy by choosing actions leading to the
states with the highest value.

Note: the story is actually much more complicated…

20 / 46

Supervised learning

Correct input/output samples are provided by a
superviser (training set).

Learning is driven by prediction errors, the
difference between the prediction and the target.

Feedback is instantaneous: the target is
immediately known.

Time does not matter: training samples are
randomly sampled from the training set.

Reinforcement learning

Behavior is acquired through trial and error, no
supervision.

Reinforcements (rewards or punishments) change
the probability of selecting particular actions.

Feedback is delayed: which action caused the
reward? Credit assignment.

Time matters: as behavior gets better, the observed
data changes.

21 / 46

2 - Applications of RL

22 / 46

Optimal control
Pendulum

Goal: maintaining the pendulum vertical.

States: angle and velocity of the pendulum.

Actions: left and right torques.

Rewards: cosine distance to the vertical.

Source: https://keras.io/examples/rl/ddpg_pendulum/ 23 / 46

https://keras.io/examples/rl/ddpg_pendulum/

Optimal control
Cartpole

Goal: maintaining the pole vertical by moving the cart left or right.

States: position and speed of the cart, angle and velocity of the pole.

Actions: left and right movements.

Rewards: +1 for each step until failure.

Source: https://towardsdatascience.com/cartpole-introduction-to-reinforcement-learning-ed0eb5b58288 24 / 46

https://towardsdatascience.com/cartpole-introduction-to-reinforcement-learning-ed0eb5b58288

Optimal control

Cart-Pole Swing-upCart-Pole Swing-up
ShareShare

25 / 46

https://www.youtube.com/watch?v=XiigTGKZfks

Board games (Backgammon, Chess, Go, etc)
TD-Gammon (Tesauro, 1992) was one of the first AI to beat human experts at a complex game,
Backgammon.

States: board configurations.

Actions: piece displacements.

Rewards: +1 for game won, -1 for game lost, 0 otherwise. sparse rewards

26 / 46

Deep Reinforcement Learning (DRL)

Classical tabular RL was limited to toy problems, with few states and actions.

It is only when coupled with deep neural networks that interesting applications of RL became possible.

Deepmind (now Google) started the deep RL hype in 2013 by learning to solve 50+ Atari games with a
CNN.

27 / 46

Atari games
States:

pixel frames.

Actions:

button presses.

Rewards:

score increases.

atari - DQN reinforcement learning experimentsatari - DQN reinforcement learning experiments
ShareShare

Mnih et al. () Playing Atari with Deep Reinforcement Learning. NIPS. 2013 http://arxiv.org/abs/1312.5602 28 / 46

https://www.youtube.com/watch?v=rQIShnTz1kU
http://arxiv.org/abs/1312.5602

Atari games

Mnih et al. () Playing Atari with Deep Reinforcement Learning. NIPS. 2013 http://arxiv.org/abs/1312.5602 29 / 46

http://arxiv.org/abs/1312.5602

Simulated cars
States:

pixel frames.

Actions:

direction, speed.

Rewards:

linear velocity (+),
crashes (-)

Asynchronous Methods for Deep Reinforcement Learning: TORCSAsynchronous Methods for Deep Reinforcement Learning: TORCS
ShareShare

30 / 46

https://www.youtube.com/watch?v=0xo1Ldx3L5Q

Parkour
States:

joint positions.

Actions:

joint displacements.

Rewards:

linear velocity (+),
crashes (-)

DeepMind Learns ParkourDeepMind Learns Parkour
ShareShare

31 / 46

https://www.youtube.com/watch?v=faDKMMwOS2Q

AlphaGo

AlphaGo was able to beat Lee Sedol in 2016, 19 times World champion.

It relies on human knowledge to bootstrap a RL agent (supervised learning).

The RL agent discovers new strategies by using self-play: during the games against Lee Sedol, it was able
to use novel moves which were never played before and surprised its opponent.

Training took several weeks on 1202 CPUs and 176 GPUs.

Silver et al. () Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, arXiv:1712.018152016 32 / 46

AlphaGo

AlphaGo O�cial TrailerAlphaGo O�cial Trailer
ShareShare

33 / 46

https://www.youtube.com/watch?v=8tq1C8spV_g

Process control

40% reduction of energy consumption when using deep RL to control the cooling of Google’s datacenters.

States: sensors (temperature, pump speeds).

Actions: 120 output variables (fans, windows).

Rewards: decrease in energy consumption

Source: https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-
40/

34 / 46

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/

Magnetic control of tokamak plasmas

Degrave et al. () Magnetic control of tokamak plasmas through deep reinforcement learning. Nature, 602(7897). doi/10.1038/s41586-021-04301-92022 35 / 46

Chip design

Roy et al. () PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning. doi:10.1109/DAC18074.2021.95860942022 36 / 46

Real robotics
States:

pixel frames.

Actions:

joint movements.

Rewards:

successful
grasping.

Learning hand-eye coordination for robotic graspingLearning hand-eye coordination for robotic grasping
ShareShare

37 / 46

https://www.youtube.com/watch?v=l8zKZLqkfII

Learning dexterity
States:

pixel frames, joint
position.

Actions:

joint movements.

Rewards:

shape obtained.

Learning DexterityLearning Dexterity
ShareShare

38 / 46

https://www.youtube.com/watch?v=jwSbzNHGflM

Autonomous driving
States:

pixel frames.

Actions:

direction, speed.

Rewards:

time before humans
take control.

Learning to drive in a dayLearning to drive in a day
ShareShare

https://wayve.ai/blog/learning-to-drive-in-a-day-with-reinforcement-learning 39 / 46

https://www.youtube.com/watch?v=eRwTbRtnT1I
https://wayve.ai/blog/learning-to-drive-in-a-day-with-reinforcement-learning

Dota2 (OpenAI)

128,000 CPU cores and 256 Nvidia P100 GPUs on Google Cloud for 10 months ($25,000 per day)…

OpenAI FiveOpenAI Five
ShareShare

40 / 46

https://www.youtube.com/watch?v=eHipy_j29Xw

Starcraft II (AlphaStar)

Source: https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

41 / 46

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

ChatGPT

https://openai.com/blog/chatgpt/ 42 / 46

https://openai.com/blog/chatgpt/

Take home messages
Deep RL is gaining a lot of importance in AI research.

Lots of applications in control: video games, robotics, industrial applications…

It may be AI’s best shot at producing intelligent behavior, as it does not rely on annotated data.

A lot of problems have to be solved before becoming as mainstream as deep learning.

Sample complexity is often prohibitive.

Energy consumption and computing power simply crazy (AlphaGo: 1 MW, Dota2: 800 petaflop/s-
days)

The correct reward function is hard to design, ethical aspects. (inverse RL)

Hard to incorporate expert knowledge. (model-based RL)

Learns single tasks, does not generalize (hierarchical RL, meta-learning)

43 / 46

Plan of the course
1. Introduction

1. Applications

2. Crash course in statistics

2. Basic RL

1. Bandits

2. Markov Decision Process

3. Dynamic programming

4. Monte-Carlo control

5. Temporal difference,
Eligibility traces

�. Function approximation

7. Deep learning

3. Model-free RL

1. Deep Q-networks

2. Beyond DQN

3. Policy gradient,
REINFORCE

4. Advantage Actor-critic
(A3C)

5. Deterministic policy
gradient (DDPG)

�. Natural gradients (TRPO,
PPO)

7. Maximum Entropy RL
(SAC)

4. Model-based RL

1. Principle, Dyna-Q, MPC

2. Learned World models

3. AlphaGo

4. Successor representations

5. Outlook

1. Hierarchical RL

2. Inverse RL

3. Meta RL

4. Offline RL

44 / 46

Suggested reading
Sutton and Barto (1998, 2017). Reinforcement Learning: An Introduction. MIT Press.

Szepesvari (2010). Algorithms for Reinforcement Learning. Morgan and Claypool.

CS294 course of Sergey Levine at Berkeley.

Reinforcement Learning course by David Silver at UCL.

http://incompleteideas.net/sutton/book/the-book.html

http://www.ualberta.ca/∼szepesva/papers/RLAlgsInMDPs.pdf

http://rll.berkeley.edu/deeprlcourse/

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

45 / 46

http://incompleteideas.net/sutton/book/the-book.html
http://www.ualberta.ca/%E2%88%BCszepesva/papers/RLAlgsInMDPs.pdf
http://rll.berkeley.edu/deeprlcourse/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

References
Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., et al. (2022). Magnetic control of tokamak

plasmas through deep reinforcement learning. Nature 602, 414–419. doi: .

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., et al. (2013). Playing Atari with Deep
Reinforcement Learning. .

Roy, R., Raiman, J., Kant, N., Elkin, I., Kirby, R., Siu, M., et al. (2022). PrefixRL: Optimization of Parallel Prefix Circuits
using Deep Reinforcement Learning. doi: .

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., et al. (2016). Mastering the game of Go
with deep neural networks and tree search. Nature 529, 484–489. doi: .

Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learning: An introduction. Cambridge, MA: MIT press.

Sutton, R. S., and Barto, A. G. (2017). Reinforcement Learning: An Introduction. 2nd ed. Cambridge, MA: MIT Press
.

10.1038/s41586-021-04301-9

http://arxiv.org/abs/1312.5602

10.1109/DAC18074.2021.9586094

10.1038/nature16961

http://incompleteideas.net/book/the-book-2nd.html

46 / 46

https://doi.org/10.1038/s41586-021-04301-9
http://arxiv.org/abs/1312.5602
https://doi.org/10.1109/DAC18074.2021.9586094
https://doi.org/10.1038/nature16961
http://incompleteideas.net/book/the-book-2nd.html

