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1 - Linear algebra
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Mathematical objects

Scalars x are 0-dimensional values. They can either take real values (x € R, e.g. x = 1.4573, floats in
CS) or natural values (x € N, e.g. ¢ = 3, integers in CS).

Vectors x are 1-dimensional arrays of length d.

The bold notation x will be used in this course, but you may also be accustomed to the arrow notation T
used on the blackboard. When using real numbers, the vector space with d dimensions is noted R, so

we can note x € <.

Vectors are typically represented vertically to outline their d elements 1, x2, .. ., Zq4:

L1
L9

Ld
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Mathematical objects

o Matrices A are 2-dimensional arrays of size (or shape) m X n (m rows, n columns, A € R™*™).

e They are represented by a capital letter to distinguish them from scalars (classically also in bold A but
not here). The element a;; of a matrix A is the element on the ¢-th row and j-th column.

aii ai2 A1ln
aa1 a9 don
A =
_a'ml Am?2 a'mn_

o Tensors A are arrays with more than two dimensions. We will not really do math on these objects, but
they are useful internally (hence the name of the tensorf Low library).
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Vectors

e A vector can be thought of as the coordinates of a point in an Euclidean space (such the 2D space),

relative to the origin.

e A vector space relies on two fundamental operations, which are that:

e Vectors can be added:

e Vectors can be multiplied by a scalar:

ax —a

Y1
Y2

Yd

-55‘1 T y1'
L2 1T Y2
Tq T Yd |

a X9

a x4

-a, ajl-

y
a,+b,

(a;1+by,a,1b,)

a,tb, X

Source: https://mathinsight.org/image/vector_2d_add
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Properties of vector spaces

e These two operations generate a lot of nice properties (see https://en.wikipedia.org/wiki/Vector_space
for a full list), including:

= associativity:

X+ (y+2z)=(x+y)+z

= commutativity:

x+y=y+x
= the existence of a zero vector
x+0=x
= |nversion:
Xx+(—x)=0

= distributivity:
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Norm of a vector

A . Vectors have anorm (or length) |x||. The most intuitive one (if you know the Pythagoras
\ ' theorem) is the Euclidean norm or L?-norm, which sums the square of each element:

AAN
N

« Other norms exist, distinguished by the subscript. The L!-norm (also called the
\ Manhattan norm) sums the absolute value of each element:

dh
N

x[l1 = |zo| 4 |z2| + - . + [z4]

e The p-norm generalizes the Euclidean norm to other powers p:

=N

[xllp = (Jer |7 + 22" 4. + [zal”)

e The infinity norm (or maximum norm) L°° returns the maximum element of the vector:

HXHOO — max(\wll, |w2‘7 O ‘wd|)

https://en.wikipedia.org/wiki/Norm_(mathematics)
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Dot product

e One important operation for vectors is the dot product (also called scalar product or inner product)

between two vectors:

(x-y) =(

e The dot product basically sums one by one the product of the elements of each vector. The angular
brackets are sometimes omitted (x - y) but we will use them in this course for clarity.

Y1
Y2

Yd

>:w1y1+x2y2+...—|—mdyd

e One can notice immediately that the dot product is symmetric:

and linear:

(x-y) =(y x)

by)-2z) =a(x-z)
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Dot product

e The dot product is an indirect measurement of the
angle 0 between two vectors:

(x-y) = |[x|[2 |ly]l2 cos(0)

e |f you normalize the two vectors by dividing them
by their norm (which is a scalar), we indeed have
the cosine of the angle between them

e The higher the normalized dot product, the more
the two vectors point towards the same direction

(cosine distance between two vectors).

* Y — COS
Tl Tl ~

a= \\ﬂ\\ cos'
o -

Source: https://mathinsight.org/image/dot_product_projection_unit_vector
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Matrices

e Matrices are derived from vectors, so most of the previous properties will be true. Let's consider this 4x3
matrix:

_a11_ -a12- _a13_
a, — a21 a, — a22 a5 — az3
a31 a32 ass
| Q41 | | Q42 | | (443 |

e Am X n matrix is therefore a collection of n vectors of size m put side by side column-wise:

A= [al s ) ag]
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Properties of matrix spaces

o All properties of the vector spaces (associativity, commutativity, distributivity) also apply to matrices, as

additions and multiplications with a scalar are defined.

aA+ BB =

Note: Beware, you can only add matrices of the same dimensions m X n. You cannot add a 2 X 3 matrix

toad X 4 one.

aAaAq1 -

& A41

G d9o1
a3l

- 8011
- 8 0oy
- 3 bs31

- B by

aaq19 -
G A99o
a3z -

- B 012
A%
- 3 bso

Q A492 -

- B by

aA13
a A923
Q. aA33

- Bbiz
- 3 b3
- 3 b33

Q a43

- B bas
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Transposition

e The transpose A! of am X n matrix A is an X m matrix, where the row and column indices are
swapped:

ail a2 A1n ajlp; ao1 Am1
a1 a9 don T aijo2 A4 Am?2
A — ] A p—
Am1  Am2 "t Qmn_ A1n A2n, " Omn_
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Matrix multiplication

o If Aisam X n matrixand B an X p matrix:

aip;  4di2 A1n b1 bio blp
a21 a22 A2 ba1 b2 pr
A= , B=1".
Om1  Am2 Amn _bnl bn2 bnp_

we can multiply them to obtain a m X p matrix:

Ci11 €12 Cip
C21 €22 C2p
C =Ax B =
Cml Cm2 Cmp

Note: 71, the number of columns of A and rows of B, must be the same!
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Matrix multiplication

 The element ¢;; of C = A X B is the dot product between the ith row of A and the jth column of B.

Source:
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Book%3A_Mathematical_Methods_in_Chemistry_(Levitus)/15%3A_
CC BY-NC-SA; Marcia Levitus
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Matrix-vector multiplication

e Thinking of vectors as n X 1 matrices, we can multiply a w
matrix m X m with a vector: ;

aii ai9 A1n L1 Y1
a1 a9 aAon L9 Y2
y=Axx=| . . _|x]|.|=
Aml  Am2 Umn_ K2 Ym_

e Theresult y is a vector of size m.

e Inthat sense, a matrix A can transform a vector of size n into
a vector of size m:

= A represents a projection from " to R™. Source:
https://en.wikipedia.org/wiki/Homogeneous_coordinate
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Dot product

e Note that the dot product between two vectors of size n is the matrix multiplication between the

transpose of the first vector and the second one:

X

T

xy:[ml L9

Tn| X

Y1
Y2

Yn

=T1Y1 +T2Y2 T ... T Ty Yn

(x-y)
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Matrix inversion

o Square matrices of size n X m can be inverted. The inverse A1 of a matrix A is defined by:

AxAl=A1xA=1
where [ is the identity matrix (a matrix with ones on the diagonal and 0 otherwise).

e Matrix inversion allows to solve linear systems of equations. Given the problem:

aAi1 1 ~aA12L2 + ... T A1 Ly — bl

as1 L1 —A292 L9 + ... 1T A9y Ly — b2

lanlwl—l—angwg—l—...—l—annmn:bn

which is equivalent to:

AXxx=Db

e We can multiply both sides to the left with A1 (if it exists) and obtain:

x=A'xb
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2 - Calculus
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Univariate functions

e A univariate function f associates to any real number x € ¥R (or a subset of Jt called the support of the
function) another (unique) real number f(x):

f: RN (1)

z — f(z),

~~
DO
~—

fix)=x2—2x+1
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Multivariate functions

« A multivariate function f associates to any vector
x € R" (or a subset) a real number f(x):

f: R"—>R (3)
x — f(x), (4)

e The variables of the function are the elements of
the vector.

e For low-dimensional vector spaces, it is possible to
represent each element explicitly, for example:

f: SR (5)
z,y,z — f(z,y,2), (6)

Source: https://en.wikipedia.org/wiki/Function_of_several_real_variables
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Vector fields

o Vector fields associate to any vector x € " (or a subset) another vector (possibly of different size):

7: R — R™
%

x = f (%),
NN = 7 7 7
NNNNNNN N = - r 7 7
NNNNNN N~ -
IR TR ER T T T R A .
VY oy b b v t
bbb vy
F f VF /2=~ NN\
A A NN NN
¥ ¥ ¥ KK r— XX
VY Pl N NN
VOO Tt N NN
K ¥ YK K&~ X X

Source: https://en.wikipedia.org/wiki/Vector_field
Note: The matrix-vector multiplication y = A X x is a linear vector field, mapping any vector X into

another vector y.
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Differentiation

e Differential calculus deals with the derivative of a
function, a process called differentiation.

d
e The derivative f'(x) or ];(33)
T

function f(x) is defined as the local slope of the
tangent to the function for a given value of x:

of a univariate

Fe) i [E D) (@)

h—0 h

o The line passing through the points (x, f(x)) and
(z + h, f(x + h)) becomes tangent to the
function when A becomes very small.

% J(x)

secanl

f(x+h)
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Differentiation

e The sign of the derivative tells you how the function
behaves locally:

= |f the derivative is positive, increasing a little bit
x increases the function f(x), so the function
is locally increasing.

= |f the derivative is negative, increasing a little
bit  decreases the function f(x), so the
function is locally decreasing.

e |t basically allows you to measure the local
influence of z on f(x): if | change a little bit the

value x, what happens to f(x)? This will be very
useful in machine learning.

secanl

h

-h
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Extrema

e A special case is when the derivative is equal to 0

in x. x is then called an extremum (or optimum) of = f:”f“; .
Xl = £X
the function, i.e. it can be a maximum or minimum. FI(x) = 2

e You can tell whether an extremum is a maximum or
a minimum by looking at its second-order
derivative:

= If f”(x) > 0, the extremum is a minimum. /

= If f”(2) < 0, the extremum is a maximum.

= If f(z) = 0, the extremum is a saddle point.
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Gradients

o The derivative of a multivariate function f(x) is a vector of partial derivatives called the gradient of the
function V. f(x):

"0f(x)”
82131

0f(x)

Vx f(X) — 0T

df (x)

. Oz,

e The subscript to the V operator denotes with respect to (w.r.t) which variable the differentiation is done.
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Partial derivatives

o A partial derivative w.r.t. to particular variable (or element of the vector) is simply achieved by
differentiating the function while considering all other variables to be constant. For example the function:

flz,y) =2® +3zy+4zy’ —1
can be partially differentiated w.r.t. x and vy as:

Of (z,y)
ox

Of(z,y)
Oy

=2z +3y+4y°

=3x+38xy
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Jacobian

e The gradient can be generalized to vector fields, where the Jacobian or Jacobi matrix is a matrix

containing all partial derivatives.

- Of

Oz

of

0T,

"0 f1

Oz

_ 011

Of1-
ozx,,

Ofm

oz, .
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Analytical properties

e Differentiation is linear, which means that if we define the function:

h(z) = a f(z) + bg(z)

its derivative is:
h(z)=af'(z)+bg (z)
o A product of functions can also be differentiated analytically (product rule):

(f(z) x g(z))" = f'(z) x g(z) + f(z) x g'(z)

Example:

f(z) = a?er
fl(z) =2xe" +2°-€°
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Chain rule

e A very important concept for neural networks is the chain rule, which tells how to differentiate function
compositions (functions of a function) of the form:

(fog)(z) = flg(z))

e The derivative of f o giis:

(fog)(xz)=(f og)(x) x g'(x)

e The chain rule may be more understandable using Leibniz's notation:

d(fog)(z) _ df(9(z))  dg(z)
dr dg(x) dr

e By posingy = g(w) as an intermediary variable, it becomes:

df(y) _ df(y)  dy
de  dy dx
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Chain rule

e The function:

1
hip) —
@) =921
is the function composition of g(x) = 2x + 1 and f(x) = —, whose derivatives are known:
T
g'(z) =2
1
, -_—
fla)=—
e lts derivative according to the chain rule is:
/ / / ]'
hi(z) = f(g9(z)) x g (z) = X 2
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Chain rule

e The chain rule also applies to partial derivatives:

Of og(x,y) Ofog(x,y)  0g(x,y)

— X

Ox 0g(z,y) Ox

and gradients:

Vx fog(x) = Vyx) fog(x) x Vx g(x)
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Integrals

» The opposite operation of differentation is integration. Given a function f(x), we search a function F'(x)
whose derivative is f(x):

e The integral of f is noted:

F(z) = / f(z) dz

dx being an infinitesimal interval (similar to A in the definition of the derivative).

e There are tons of formal definitions of integrals (Riemann, Lebesgue, Darboux...) and we will not get into
details here as we will not use integrals a lot.
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Integrals

e The most important to understand for now is maybe that the integral of a function is the area under the
curve.

o The area under the curve of a function f on the interval |a, b] is:

S:/abf(w)da:

Source: https://www.math24.net/riemann-sums-definite-integral/
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Integrals

» One way to approximate this surface is to split the interval |a, b| into n intervals of width da with the
points x1,x2,...,x,.

o This defines n rectangles of width dx and height f(x;), so their surface is f(x;) dx.

e The area under the curve can then be approximated by the sum of the surfaces of all these rectangles.

YA
y=f(x)
A TN
TN
S ]
Rl Ier i i Ri i i Ii{n
ANEEE NN .
0 a X x Xiq X, xn—l! b X
gl 52 51 én

Source: https://www.math24.net/riemann-sums-definite-integral/
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Integrals

« When n — 00, or equivalently dr — 0, the sum of these rectangular areas (called the Riemann sum)
becomes exactly the area under the curve. This is the definition of the definite integral:

e Very roughly speaking, the integral can be considered as the equivalent of a sum for continuous
functions.

YA
y=f(x
1 [N
///i | \
N
131 1?2 i ﬂg i i I?n
L EENE S
0 a XX it X X, b X
‘fl ‘52 é; ‘Sn

Source: https://www.math24.net/riemann-sums-definite-integral/
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3 - Probability theory



Discrete probability distributions

e Let's note X a discrete random variable with n realizations (or
outcomes) £1,...,T,.

e The probability that X takes the value x; is defined by the relative

frequency of occurrence, i.e. the proportion of samples having the value
x;, when the total number [V of samples tends to infinity:

Number of favorable cases
Credit: P(X — gjz) —
https://commons.wikimedia.org/wiki/File:2- Total number of samples
Dice-Icon.svg

o The set of probabilities { P(X = ;) }"_; define the probability distribution for the random variable (or
probability mass function, pmf).

o By definition, we have 0 < P(X = x;) < 1 and the probabilities have to respect:
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Mathematical expectation and variance

e An important metric for a random variable is its mathematical expectation or expected value, i.e. its
“mean’ realization weighted by the probabilities:

ﬂ[X] — ZP(X — a:z) €T;

e The expectation does not even need to be a valid realization:

2[Coin] = ~ 0+ =1 = 0.5
,.0111—2 9 — V.

1
6

i[Dice] = — (1+2+3+4+5+6)=3.5

e We can also compute the mathematical expectation of functions of a random variable:

(X)) = ZP(X = x;) f(;)
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Mathematical expectation and variance

e The variance of a random variable is the squared deviation around the mean:

Var(X) = E[(X — E[X])*] = > P(X = ;) (z: — E[X])’

e Variance of a coin:

1

1
Var(Coin) = - (0 — 0.5)% + 5 (1- 0.5)% = 0.25

e Variance of a dice:

1

1 105
6

Dice) =
Var(Dice) 36

(1-35)*+(2-35)*+(3—-35)°+(4—-35)°+(5—3.5)*+(6—3.5)") =
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Continuous probability distributions

1.0

go,u,d2 (X)

0.0

0.8

0.6

A

0.4

0.2

= 0.2, m—
= 1.0, m—
=5.0,
=0.5, =

T
| © OO

LI

—
X

3

4

5

Source: https://en.wikipedia.org/wiki/Normal_distribution

e Continuous random variables can take an infinity of
continuous values, e.g. & or some subset.

e The closed set of values they can take is called the support
Dx of the probability distribution.

e The probability distribution is described by a probability
density function (pdf) f(x).

o The pdf of a distribution must be positive (f(x) > 0Vx €
Dx) and its integral must be equal to 1:

/%DX flz)dx =1

e The pdf does not give the probability of taking a particular value « (it is 0), but allows to get the
probability that a value lies in a specific interval:

P(aSng):/bf(w)dx

e One can however think of the pdf as the likelihood that a value x comes from that distribution.
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Expectation and variance of continuous distributions

e The mathematical expectation is now defined by an integral instead of a sum:

(X = /xepx f(x) xdx

the variance:

Var(X) = /ED f(z) (z — E[X])* dz

or a function of the random variable:

e Note that the expectation operator is linear:

ClaX +bY| =aE|X|+bDE|Y]
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Some parameterized probability distributions

e Probability distributions can in principle have any form: f(z) is unknown.

e However, specific parameterized distributions can be very useful: their pmf/pdf is fully determined by a
couple of parameters.

e The Bernouilli distribution is a binary (discrete, 0 or 1) distribution with a parameter p specifying the
probability to obtain the outcome 1:

P X=1)=pand P(X =0)=1—-p

P(X=z)=p"(1-p) "

e The Multinouilli or categorical distribution is a discrete distribution with k realizations. Each realization
x; is associated with a parameter p; > 0 representing its probability. We have Zz p; = 1.

P(X =z;) =p;

e Knowing p or the p; tells us everything about the discrete distributions.
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The uniform distribution

e The uniform distribution has an equal and constant

f(x
(x) probability of returning values between a and b,
never outside this range.
1 | o o e |tis parameterized by two parameters:
b—a | | = the start of the range a.
| |
: : = the end of the range b.
: | e Its supportis |a, b|.
| |
e S
0 a b X

Credit: https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

o The pdf of the uniform distribution U (a, b) is defined on |a, b| as:

1

f(z;a,b) = 7 —

e Knowing a and b completely defines the distribution.
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The normal or Gaussian distribution

e For continuous distributions, the normal
distribution is the most frequently encountered

1.0 | | |
H=0, 0?%=0.2, == _
i H=0, 0%=1.0, === 1
08 A P=0, 0?=50, == _ one.
- H=-2, 0%=0.5, = 7
. 0.6
=
st ] = the mean L.
§0.4
- - = the variance o (or standard deviation o).
0.2
i 1 e Its supportis .
0.0_ |
| | | | [ | | | | |
-5 -4 -3 -2 -1 0 1 2 3 4 5

Credit: https://en.wikipedia.org/wiki/Normal_distribution

e The pdf of the normal distribution A/ (u, o) is defined on R as:

e |tis parameterized by two parameters:

fz; p,0)

V212

e Knowing u and o completely defines the distribution.
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The exponential distribution

0 e The exponential distribution is the probability
- i= ‘13-5 distribution of the time between events in a
2 15 Poisson point process, i.e., a process in which
{n . .
5 = = events occur continuously and independently at a
©
> constant average rate.
E 2 e |tis parameterized by one parameter:
O
= ¥ = the rate .
o
c L | | , , , e Its supportis R* (z > 0).

Credit: https://en.wikipedia.org/wiki/Exponential_distribution

e The pdf of the exponential distribution is defined on ™ as:
fz;0) = Ae ??

e Knowing A completely defines the distribution.
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Joint probabilities

e Let’'s now suppose that we have two random variables X and Y with different probability distributions
P(X)and P(Y).

o The joint probability P(X,Y ) denotes the probability of observing the realizations x and y at the same
time:

P(X =x,Y = y)
o If the random variables are independent, we have:

P(X =z,Y =y) = P(X =z) P(Y = y)

e |f you know the joint probability, you can compute the marginal probability distribution of each variable:

P(X=2)=) P(X=2zY =y)

e The same is true for continuous probability distributions:

f(z) = / f(z,y) dy
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Conditional probabilities

e Some useful information between two random variables is the conditional probability.

o P(X = z|Y = y) is the conditional probability that X = z, given that Y = y is observed.
e« Y = yisnot random anymore: it is a fact (at least theoretically).

e You wonder what happens to the probability distribution of X now that you know the value of Y.

e Conditional probabilities are linked to the joint probability by:

P(X =z|Y =y) =

o If X and Y are independent, we have P(X = z|Y = y) = P(X = z) (knowing Y does not change
anything to the probability distribution of X).

e We can use the same notation for the complete probability distributions:

P(X,Y)

PXIY) = =5
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Joint and conditional probabilities: using a Venn diagram

Dog

Cat

Credit: https://www.elevise.co.uk/g-e-m-h-5-u.html

ne joint proba

ne conditiona

P(dog|cat) =

vility of loving both cats and dogs is P(cat, dog) =

e You ask 50 people whether they like cats or dogs:
= 18 like both cats and dogs.

= 21 like only dogs.
= 5 like only cats.

= 6 like none of them.

e We consider loving cats and dogs as random

variables (and that our sample size is big enough to
use probabilities...)

» We have P(dog) = 1%t% and P(cat) = 132

50 50
e Among the 23 who love cats, which proportion also
loves dogs?
18
50 °

probability of loving dogs given one loves cats is:

P(cat,dog) % - 18

P(cat) % 23
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Bayes' rule

e Noticing that the definition of conditional probabilities is symmetric:

P(X,Y)=P(X|Y)P(Y)=P(Y|X) P(X)
we can obtain the Bayes' rule:

P(X|Y) P(Y)

P(Y|X) = K]

e Itis very useful when you already know P (X |Y) and want to obtain P(Y | X) (Bayesian inference).

= P(Y|X) is called the posterior probability.
. P(X|Y) is called the likelihood.
P(Y) is called the prior probability (belief).
P(

X)) is called the model evidence or marginal likelihood.
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Bayes' rule : example

o Let's consider a disease D (binary random variable) and a medical test I" (also binary). The disease

affects 10% of the general population:
P(D=1)=0.1 P(D=0)=0.9
 When a patient has the disease, the test is positive 80% of the time:
P(T=1D=1)=0.8 P(T=0D=1)=0.2
 When a patient does not have the disease, the test is still positive 10% of the time:
P(T =1|D =0) =0.1 P(T =0|/D=0)=0.9

e Given that the test is positive, what is the probability that the patient is ill?
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Bayes' rule : example

P(T=1|D =1)P(D = 1)

P(D=1T=1)= PT 1)

P(T=1|D =1)P(D = 1)

P(T=1D=1)P(D=1)+P(T =1/D =0)P(D

B 0.8 x 0.1
- 0.8%x0.14+0.1x0.9

= (0.47

0)
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Random sampling / Monte Carlo sampling

e In ML, we will deal with random variables whose exact probability distribution is unknown, but we are
interested in their expectation or variance anyway.

« Random sampling or Monte Carlo sampling (MC) consists of taking /N samples x; out of the distribution
X (discrete or continuous) and computing the sample average:

1 N
[ X] = E,ox|z] ~ ~ 2%

>

samples T

e More samples will be obtained where f(x) is high (x is probable), so the average of the sampled data
will be close to the expected value of the distribution.
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Random sampling / Monte Carlo sampling

Law of big numbers

As the number of identically distributed, randomly generated variables increases, their sample mean

(average) approaches their theoretical mean.

e MC estimates are only correct when:

= the samples are i.i.d (independent and identically distributed):

o independent: the samples must

o identically distributed: the samp

e unrelated with eac

es must come from t

N other.

ne same distribution X .

= the number of samples is large enough. Usually N > 30 for simple distributions.
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Monte-carlo sampling

ion of the random variable with random sampling:

imate any funct
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https://towardsdatascience.com/an-overview-of-monte-carlo-methods-675384eb1694

Central limit theorem

e Suppose we have an unknown distribution X with expected value i = [E| X | and variance o

e We can take randomly /N samples from X to compute the sample average:

1 N
1=1

e The Central Limit Theorem (CLT) states that:

2

The distribution of sample averages is normally distributed with mean p and variance UW

O

SNNN(M,\W

)

2
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Central limit theorem

e If we perform the sampling multiple times, even with few samples, the average of the sampling averages
will be very close to the expected value.

e The more samples we get, the smaller the variance of the estimates.

o Although the distribution X can be anything, the sampling averages are normally distributed.

P 0 Gaussian
samples
of size n
B —>
X

:

X X X
> M =—>
population sampling distribution

Credit: https://en.wikipedia.org/wiki/Central_limit_theorem
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Estimators

e CLT shows that the sampling average is an unbiased estimator of the expected value of a distribution:

(Sn) = E(X)

e An estimator is a random variable used to measure parameters of a distribution (e.g. its expectation). The
problem is that estimators can generally be biased.

o Take the example of a thermometer M measuring the temperature I'. T' is a random variable (normally

distributed with 4 = 20 and o = 10) and the measurements M relate to the temperature with the
relation:

M =0.9517 4 0.65

Measurement Temperature distribution

40 0.040

35
0.035

30
0.030

25

0.025
c 20 o

d

o
0.020
15

10 0.015

- 0.010

0 0.005

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
t t
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Estimators

e The thermometer is not perfect, but do random measurements allow us to estimate the expected value of
the temperature?

e We could repeatedly take 100 random samples of the thermometer and see how the distribution of
sample averages look like:

Histogram of measurements

250
200
150
100

50

e But, as the expectation is linear, we actually have:

EIM| =E[0.95T + 0.65] = 0.95E|T’| 4+ 0.65 = 19.65 £ E|T]

e The thermometer is a biased estimator of the temperature.
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Estimators

o Let's note @ a parameter of a probability distribution X that we want to estimate (it does not have to be
its mean).

o An estimator 6 is a random variable mapping the sample space of X to a set of sample estimates.

e The bias of an estimator is the mean error made by the estimator:

A A

B(6) =E[0 — 0] =E[f] — 6

e The variance of an estimator is the deviation of the samples around the expected value:

Var() = E[(6 — E[9])*]

e |deally, we would like estimators with:

= low bias: the estimations are correct on average (= equal to the true parameter).

= low variance: we do not need many estimates to get a correct estimate (CLT: JLN)
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Estimators: bias and variance

o Unfortunately, the perfect estimator
Low Variance High Variance does not exist.

e Estimators will have a bias and a
variance:

= Bias: the estimated values will be
wrong, and the policy not optimal.

Low Bias

= Variance: we will need a lot of
samples (trial and error) to have
correct estimates.

e One usually talks of a bias/variance
trade-off: if you have a small bias, you
will have a high variance, or vice versa.

e In machine learning, bias corresponds to
underfitting, variance to overfitting.

High Bias
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5 - Information theory



Information

e Information theory (Claude Shannon) asks how much information is contained in a probability
distribution.

e Information is related to surprise or uncertainty: are the outcomes of a random variable surprising?
= Almost certain outcomes (P ~ 1) are not surprising because they happen all the time.
= Almost impossible outcomes (P ~ () are very surprising because they are very rare.

e A useful measurement of how surprising is an
outcome x is the self-information:

Self-information

I(x) = —log P(X = x)

S e Depending on which log is used, self-information
) has different units:

» log,: bits or shannons.

= log, = In: nats.

0 e Butitis just arescaling, the base never matters.
0.0 0.2 0.4 0.6 0.8 1.0

P(x)
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Entropy

e The entropy (or Shannon entropy) of a probability distribution is the expected value of the self-
information of its outcomes:

H(X)=E, x|/I(z)]=E, . x|—log P(X = z)]

e |t measures the uncertainty, randomness or information content of the random variable.

e |n the discrete case:
Entropy of a coin (Bernouilli)

1.2
H(X)=-)» P(z)logP(z) .
I —
‘E’ 0.8
e In the continuous case: 8
v 0.6
"’,‘1 0.4
H(X)=— [ f(z) log f(z) dx
T 0.2
e The entropy of a Bernouilli variable is maximal 0.0 — — — — -
when both outcomes are equiprobable. | | p | |

e |f a variable is deterministic, its entropy is minimal
and equal to zero.
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Joint and conditional entropies

The joint entropy of two random variables X and Y is defined by:

HX,)Y)=E;,.xyv|-logP(X =z,Y =

The conditional entropy of two random variables X and Y is defined by:

H(X]Y) = Esoxyy|—log P(X = 2]Y =y)| = E;ox y v [—log

If the variables are independent, we have:
H(X,Y)=H(X)+ H(Y) or H(X|Y)
Both are related by:
H(X|Y)=H(X,Y)—- H(Y)

The equivalent of Bayes' rule is:

H(Y|X)=H(X|Y)+H(Y) - H(X)

y)]

P(X =zY =y)

P(Y = y)

H(X)

|
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Mutual Information

e The most important information measurement between two variables is the mutual information Ml (or
information gain):

I(X,Y)=H(X)- H(X|Y)=H®Y) - HY|X)

e |t measures how much information the variable X holds on Y:

= If the two variables are independent, the Ml is 0 : X is as random, whether you know Y or not.
I(X,Y)=0

= If the two variables are dependent, knowing Y gives you information on X, which becomes less
random, i.e. less uncertain / surprising.

I(X,Y) >0

o If you can fully predict X when you know Y, it becomes deterministic (H (X |Y ) = 0) so the mutual
information is maximal (I(X,Y) = H(X)).
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Cross-entropy

e The cross-entropy between two distributions X and Y is defined as:

H(X,Y) — <Ewva[_ IOgP(Y — ZIZ)]

o Beware that the notation H (X ,Y') is the same as the joint entropy, but it is a different concept!

e The cross-entropy measures the negative log-likelihood that a sample x taken from the distribution X
could also come from the distribution Y .

e More exactly, it measures how many bits of information one would need to distinguish the two
distributions X and Y.

A

\/

samples from X

68 /70



Cross-entropy
A

samples from X

H(X,Y) = E;ox[—log P(Y = z)]

e |f the two distributions are the same almost anywhere, one cannot distinguish samples from the two
distributions:

= The cross-entropy is the same as the entropy of X.

o If the two distributions are completely different, one can tell whether a sample Z comes from X or Y:

= The cross-entropy is higher than the entropy of X.
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Kullback-Leibler divergence

o In practice, the Kullback-Leibler divergence KL (X ||Y ') is a better measurement of the similarity
(statistical distance) between two probability distributions:

)
)

KL(X||Y) = E,ox|— log |

Y ==«
P(X =«

e |tis linked to the cross-entropy by:
KL(X||Y)=H(X,Y) - H(X)

e |f the two distributions are the same almost anywhere:

= The KL divergence is zero.
e |f the two distributions are different:
» The KL divergence is positive.

e Minimizing the KL between two distributions is the same as making the two distributions “equal”.

e Again, the KL is not a metric, as it is not symmetric.
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