

Deep Reinforcement Learning

Basics in mathematics

Julien Vitay Professur für Künstliche Intelligenz - Fakultät für Informatik

Outline

- 1. Linear algebr a
- 2. Calculus
- 3. Probability theor y
- 4. Statistics

 \equiv

5. Information theor y

1 - Linear algebra

Mathematical objects

- ${\bf Scalars}\ x$ are 0-dimensional values. They can either take real values ($x\in \real$, e.g. $x=1.4573$, floats in CS) or natural values ($x\in\mathbb{N}$, e.g. $x=3$, integers in CS).
- **Vectors** \bf{x} are 1-dimensional arrays of length d .
- The bold notation ${\bf x}$ will be used in this course, but you may also be accustomed to the arrow notation \overline{x} used on the blackboard. When using real numbers, the **vector space** with d dimensions is noted \Re^d , so we can note $\mathbf{x} \in \Re^d$.
- Vectors are typically represented vertically to outline their d elements x_1, x_2, \ldots, x_d :

Mathematical objects

 \equiv

- ${\sf Matrices} \ A$ are 2-dimensional arrays of size (or shape) $m \times n$ (m rows, n columns, $A \in \Re^{m \times n}$).
- They are represented by a capital letter to distinguish them from scalars (classically also in bold $\mathbf A$ but not here). The element a_{ij} of a matrix A is the element on the i -th row and j -th column.

 a_{1n} a_{2n} $\ddot{\bullet}$ a_{mn} ⎦ ⎤

Tensors $\mathcal A$ are arrays with more than two dimensions. We will not really do math on these objects, but they are useful internally (hence the name of the tensorflow library).

Vectors

 \equiv

- A vector can be thought of as the **coordinates of a point** in an Euclidean space (such the 2D space), relative to the origin.
- A vector space relies on two fundamental operations, which are that:
- Vectors can be added:

Vectors can be multiplied by a scalar:

$$
\mathbf{x}+\mathbf{y}=\begin{bmatrix}x_1\\x_2\\ \vdots\\x_d\end{bmatrix}+\begin{bmatrix}y_1\\y_2\\ \vdots\\y_d\end{bmatrix}=\begin{bmatrix}x_1+y_1\\x_2+y_2\\ \vdots\\x_d+y_d\end{bmatrix}
$$

$$
a\,\mathbf{x}=a\, \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} = \begin{bmatrix} a\,x_1 \\ a\,x_2 \\ \vdots \\ a\,x_d \end{bmatrix}
$$

 $b₂$ $a₂$

 $a_2 + b_2$

Source: https://mathinsight.org/image/vector_2d_add

Properties of vector spaces

- These two operations generate a lot of nice properties (see https://en.wikipedia.org/wiki/Vector_space for a full list), including:
	- associativity:

commutativity:

 $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$

 $\mathbf{x} + \mathbf{0} = \mathbf{x}$

 $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$

- the existence of a zero vector
- **n** inversion:

 \blacksquare distributivity:

 \equiv

 $a\left(\mathbf{x} + \mathbf{y}\right) = a\,\mathbf{x} + a\,\mathbf{y}$

 $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$

Norm of a vector

Vectors have a **norm** (or length) $||\mathbf{x}||$. The most intuitive one (if you know the Pythagoras theorem) is the **Euclidean norm** or L^2 -norm, which sums the square of each element:

Other norms exist, distinguished by the subscript. The L^1 **-norm** (also called the Manhattan norm) sums the absolute value of each element:

 $||\mathbf{x}||_1 = |x_1| + |x_2| + \ldots + |x_d|$

- The **p-norm** generalizes the Euclidean norm to other powers p : $||\mathbf{x}||_p = (|x_1|^p + |x_2|^p + \ldots + |x_d|^p)^{\frac{1}{p}}$
- The **infinity norm** (or maximum norm) L^∞ returns the maximum element of the vector:

 $||\mathbf{x}||_{\infty} = \max(|x_1|, |x_2|, \ldots, |x_d|)$

$$
||\mathbf{x}||_2 = \sqrt{x_1^2 + x_2^2 + \ldots + x_d^2}
$$

 \equiv

 $\left\Vert x\right\Vert _{2}$

Dot product

• One important operation for vectors is the **dot product** (also called scalar product or inner product) between two vectors:

- The dot product basically sums one by one the product of the elements of each vector. The angular brackets are sometimes omitted $(\mathbf{x} \cdot \mathbf{y})$ but we will use them in this course for clarity.
- One can notice immediately that the dot product is **symmetric**:

and **linear**:

 \equiv

$$
\langle (a\,\mathbf{x} + b\,\mathbf{y}) \cdot \mathbf{z} \rangle = a\,\langle \mathbf{x} \cdot \mathbf{z} \rangle
$$

 $x_2 y_2 + \ldots + x_d y_d$

 $\langle \mathbf{y} \cdot \mathbf{z} \rangle$

$$
\langle \mathbf{x}\cdot\mathbf{y}\rangle=\langle \begin{bmatrix} x_1\\ x_2\\ \vdots\\ x_d \end{bmatrix}\cdot \begin{bmatrix} y_1\\ y_2\\ \vdots\\ y_d \end{bmatrix} \rangle=x_1\,y_1 + i
$$

$$
\langle \mathbf{x} \cdot \mathbf{y} \rangle = \langle \mathbf{y} \cdot \mathbf{x} \rangle
$$

Dot product

The dot product is an indirect measurement of the $\mathbf{angle}\; \theta$ between two vectors:

 \equiv

- If you normalize the two vectors by dividing them by their norm (which is a scalar), we indeed have the cosine of the angle between them
- The higher the normalized dot product, the more the two vectors point towards the same direction (**cosine distance** between two vectors).

$$
\langle \mathbf{x}\cdot\mathbf{y}\rangle=||\mathbf{x}||_2\,||\mathbf{y}||_2\,\cos(\theta)
$$

$$
\langle \frac{\mathbf{x}}{||\mathbf{x}||_2} \cdot \frac{\mathbf{y}}{||\mathbf{y}||_2} \rangle = \cos(\theta)
$$

Source: https://mathinsight.org/image/dot_product_projection_unit_vector

Matrices

 \equiv

Matrices are derived from vectors, so most of the previous properties will be true. Let's consider this 4x3 matrix:

Each column of the matrix is a vector with 4 elements:

$$
A=\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}
$$

$$
\textbf{a}_1=\begin{bmatrix}a_{11}\\a_{21}\\a_{31}\\a_{41}\end{bmatrix}\qquad \textbf{a}_2=\begin{bmatrix}a_{12}\\a_{22}\\a_{32}\\a_{42}\end{bmatrix}\qquad \textbf{a}_3=\begin{bmatrix}a_{13}\\a_{23}\\a_{33}\\a_{43}\end{bmatrix}
$$

A $m \times n$ matrix is therefore a collection of n vectors of size m put side by side column-wise:

$$
A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}
$$

Properties of matrix spaces

 \equiv

All properties of the vector spaces (associativity, commutativity, distributivity) also apply to matrices, as additions and multiplications with a scalar are defined.

$$
\alpha \, A + \beta \, B = \begin{bmatrix} \alpha \, a_{11} + \beta \, b_{11} & \alpha \, a_{12} + \\ \alpha \, a_{21} + \beta \, b_{21} & \alpha \, a_{22} + \\ \alpha \, a_{31} + \beta \, b_{31} & \alpha \, a_{32} + \\ \alpha \, a_{41} + \beta \, b_{41} & \alpha \, a_{42} + \beta \, \end{bmatrix}
$$

Note: Beware, you can only add matrices of the same dimensions $m \times n$. You cannot add a 2×3 matrix to a 5×4 one.

- $\alpha \, a_{12} + \beta \, b_{12} \quad \alpha \, a_{13} + \beta \, b_{13}$ ⎤
- $\alpha \: a_{22} + \beta \: b_{22} \quad \alpha \: a_{23} + \beta \: b_{23}$
- $\alpha \, a_{32} + \beta \, b_{32} \quad \alpha \, a_{33} + \beta \, b_{33}$
- $\alpha \: a_{42} + \beta \: b_{42} \quad \alpha \: a_{43} + \beta \: b_{43} \big]$

Transposition

 \equiv

The $\bold{transpose}~A^T$ of a $m\times n$ matrix A is a $n\times m$ matrix, where the row and column indices are swapped:

This is also true for vectors, which become horizontal after transposition:

$$
A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \qquad A^T =
$$

 x_2 … x_d

$$
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}, \qquad \mathbf{x}^T = \begin{bmatrix} x_1 & x \end{bmatrix}
$$

Matrix multiplication

 \equiv

If A is a $m \times n$ matrix and B a $n \times p$ matrix:

$$
A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad B =
$$

we can multiply them to obtain a $m \times p$ matrix:

$$
C = A \times B = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ \vdots & \vdots \\ c_{m1} & c_{m2} \end{bmatrix}
$$

where each element c_{ij} is the dot product of the i th row of A and j th column of B :

$$
c_{ij}=\langle A_{i,:}\cdot B_{:,j}\rangle=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj}=\sum a_{ik}b
$$

Note: n , the number of columns of A and rows of B , must be the same!

$$
+\,a_{in}b_{nj}=\sum_{k=1}^na_{ik}b_{kj}
$$

Matrix multiplication

The element c_{ij} of $C = A \times B$ is the dot product between the i th row of A and the j th column of B .

$$
c_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41}
$$
\n
$$
\left[\frac{a_{11} \ a_{12} \ a_{13} \ a_{14}}{a_{21} \ a_{22} \ a_{23} \ a_{24}}\right] \left[\begin{array}{c} b_{11} \ b_{12} \ b_{21} \ b_{22} \ b_{23} \ b_{31} \ b_{32} \ b_{33} \end{array}\right] = \left[\begin{array}{c} c_{11} \ c_{21} \ c_{22} \ c_{23} \end{array}\right]
$$
\n
$$
2 \times 4 \qquad 4 \times 3 \qquad 2 \times 3
$$
\n
$$
c_{22} = a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42}
$$
\n
$$
\left[\begin{array}{cc} a_{11} \ a_{12} \ a_{13} \ a_{14} \ a_{22} \ a_{23} \ a_{24} \end{array}\right] \left[\begin{array}{c} b_{11} \ b_{12} \ b_{21} \ b_{22} \ b_{23} \ b_{31} \ b_{32} \end{array}\right] = \left[\begin{array}{c} c_{11} \ c_{12} \ c_{21} \ c_{22} \ c_{23} \end{array}\right]
$$

Source:

 \equiv

CC BY-NC-SA; Marcia Levitus [https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Book%3A_Mathematical_Methods_in_Chemistry_\(Levitus\)/15%3A_](https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Book%3A_Mathematical_Methods_in_Chemistry_(Levitus)/15%3A_Matrices/15.03%3A_Matrix_Multiplication)

Matrix-vector multiplication

Thinking of vectors as $n\times 1$ matrices, we can multiply a $m \times n$ with a vector:

$$
\mathbf{y} = A \times \mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}
$$

The result y is a vector of size m .

- In that sense, a matrix A can transform a vector of size n into a vector of size m :
	- A represents a **projection** from \Re^n to \Re^m .

Dot product

 \equiv

Note that the **dot product** between two vectors of size n is the matrix multiplication between the transpose of the first vector and the second one:

$$
\mathbf{x}^T \times \mathbf{y} = \begin{bmatrix} x_1 & x_2 & \ldots & x_n \end{bmatrix} \times \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = x_1 \, y_1 +
$$

 $\langle x_1 \cdot x_2 \cdot y_1 + \ldots + x_n \cdot y_n \rangle = \langle x \cdot y \rangle.$

Matrix inversion

Square matrices of size $n \times n$ can be inverted. The **inverse** A^{-1} of a matrix A is defined by:

Matrix inversion allows to solve linear systems of equations. Given the problem:

$$
A\times A^{-1}=A^{-1}\times A
$$

where I is the identity matrix (a matrix with ones on the diagonal and 0 otherwise).

$$
\begin{cases} a_{11}\,x_1 + a_{12}\,x_2 + \ldots + a_{1n}\,x_n = b_1 \\ a_{21}\,x_1 + a_{22}\,x_2 + \ldots + a_{2n}\,x_n = b_2 \\ \ldots \\ a_{n1}\,x_1 + a_{n2}\,x_2 + \ldots + a_{nn}\,x_n = b_n \end{cases}
$$

which is equivalent to:

 \equiv

$$
A\times\mathbf{x}=\mathbf{b}
$$

We can multiply both sides to the left with A^{-1} (if it exists) and obtain:

$$
\mathbf{x}=A^{-1}\times\mathbf{b}
$$

$= I$

2 - Calculus

Univariate functions

 \equiv

A **univariate function** f associates to any real number $x\in \Re$ (or a subset of \Re called the support of the function) another (unique) real number $f(x)$:

(1) (2)

Multivariate functions

 \equiv

A **multivariate function** f associates to any vector $\mathbf{x} \in \Re^n$ (or a subset) a real number $f(\mathbf{x})$:

- The variables of the function are the elements of the vector.
- For low-dimensional vector spaces, it is possible to represent each element explicitly, for example:

$$
f: \quad \mathbb{R}^n \to \mathbb{R} \tag{3}
$$

$$
\mathbf{x} \mapsto f(\mathbf{x}), \tag{4}
$$

$$
f: \mathbb{R}^3 \to \mathbb{R}
$$

$$
x, y, z \mapsto f(x, y, z),
$$
 (5)

Source: https://en.wikipedia.org/wiki/Function_of_several_real_variables

Vector fields

 $\bm{\mathsf{Vector}}$ fields associate to any vector $\mathbf{x} \in \Re^n$ (or a subset) another vector (possibly of different size):

Source: https://en.wikipedia.org/wiki/Vector_field

 \equiv

Note: The matrix-vector multiplication $\mathbf{y} = A \times \mathbf{x}$ is a linear vector field, mapping any vector \mathbf{x} into another vector y.

$$
\overrightarrow{f}: \mathbb{R}^n \rightarrow \mathbb{R}^m
$$
\n
$$
\mathbf{x} \mapsto \overrightarrow{f}(\mathbf{x}),
$$
\n
$$
\mathbf{x} \mapsto \overrightarrow{f}(\mathbf{x}),
$$
\n
$$
\mathbf{x} \mapsto \mathbf{x} \map
$$

Differentiation

 \equiv

- Differential calculus deals with the **derivative** of a function, a process called differentiation.
- The derivative $f'(x)$ or $\frac{dJ(x)}{dx}$ of a univariate function $f(x)$ is defined as the local *slope* of the tangent to the function for a given value of x : dx *df*(*x*)

$$
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
$$

The line passing through the points $(x, f(x))$ and $\left(x+h,f(x+h)\right)$ becomes tangent to the function when h becomes very small.

Differentiation

- The sign of the derivative tells you how the function behaves locally:
	- **If the derivative is positive, increasing a little bit** x increases the function $f(x)$, so the function is **locally increasing**.
	- **If the derivative is negative, increasing a little** bit x decreases the function $f(x)$, so the function is **locally decreasing**.
- It basically allows you to measure the local influence of x on $f(x)$: if I change a little bit the value x , what happens to $f(x)$? This will be very useful in machine learning.

Extrema

- A special case is when the derivative is equal to 0 in x . x is then called an $extremum$ (or optimum) of the function, i.e. it can be a maximum or minimum.
- You can tell whether an extremum is a maximum or a minimum by looking at its second-order derivative:
	- If $f''(x) > 0$, the extremum is a **minimum**.
	- If $f''(x) < 0$, the extremum is a **maximum**.
	- If $f''(x) = 0$, the extremum is a **saddle point**.

Gradients

 \equiv

The derivative of a **multivariate function** $f(\mathbf{x})$ is a vector of partial derivatives called the **gradient of the** function $\nabla_{\mathbf{x}}\,f(\mathbf{x})$:

The subscript to the ∇ operator denotes *with respect to* (w.r.t) which variable the differentiation is done.

Partial derivatives

 \equiv

A **partial derivative** w.r.t. to particular variable (or element of the vector) is simply achieved by differentiating the function while considering all other variables to be **constant**. For example the function:

$$
f(x,y) = x^2 + 3\,x\,y + 4\,x\,y^2 - 1
$$

can be partially differentiated w.r.t. x and y as:

$$
\left\{\begin{aligned} \frac{\partial f(x,y)}{\partial x} &= 2\,x + 3\,y + 4\,y^2\\ \frac{\partial f(x,y)}{\partial y} &= 3\,x + 8\,x\,y \end{aligned}\right.
$$

Jacobian

 \equiv

The gradient can be generalized to **vector fields**, where the **Jacobian** or **Jacobi matrix** is a matrix containing all partial derivatives.

$$
J = \begin{bmatrix} \dfrac{\partial \mathbf{f}}{\partial x_1} & \cdots & \dfrac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \dfrac{\partial f_1}{\partial x_1} \\ \vdots \\ \dfrac{\partial f_m}{\partial x_1} \end{bmatrix}
$$

Analytical properties

Differentiation is linear, which means that if we define the function:

its derivative is:

A product of functions can also be differentiated analytically (product rule):

Example:

$$
h(x)=a\,f(x)+b\,g(x)
$$

$$
h'(x)=a\,f'(x)+b\,g'
$$

$$
b\,g'(x)
$$

$$
(f(x)\times g(x))'=f'(x)\times g(x)+f(x)\times g'(x)
$$

$$
f(x) = x^2 \, e^x
$$

$$
f'(x) = 2 \, x \, e^x + x^2 \, .
$$

$$
x)
$$

$$
e^x
$$

Chain rule

 \equiv

A very important concept for neural networks is the **chain rule**, which tells how to differentiate **function compositions** (functions of a function) of the form:

The chain rule may be more understandable using Leibniz's notation:

 dx *dy*

$$
(f\circ g)(x)=f(g(x))
$$

The derivative of $f \circ g$ is:

$$
(f\circ g)'(x) = (f'\circ g)(x)
$$

$$
\frac{d(f\circ g)(x)}{dx}=\frac{df(g(x))}{dg(x)}\times \frac{dg(x)}{dx}
$$

By posing $y = g(x)$ as an intermediary variable, it becomes:

$$
\frac{df(y)}{dx}=\frac{df(y)}{dy}\times\frac{a}{a}
$$

 $g)(x)\times g'(x)$

Chain rule

• The function :

 \equiv

is the function composition of $g(x) = 2\,x + 1$ and $f(x) = \overset{\text{\tiny{\textsf{I}}}}{-}$, whose derivatives are known: $h(x) =$ $2\,x + 1$ 1 *x* 1 $g'(x)=2$ $f'(x) =$ *x* 2 1

 \bullet Its derivative according to the chain rule is:

$$
h'(x)=f'(g(x))\times g'(x)=-\frac{1}{(2\,x+1)^2}\times 2
$$

Chain rule

The chain rule also applies to partial derivatives:

and gradients:

 \equiv

 $\nabla_{\mathbf{x}} f \circ g(\mathbf{x}) = \nabla_{g(\mathbf{x})} f \circ g(\mathbf{x}) \times \nabla_{\mathbf{x}} g(\mathbf{x})$

 \times ∂*x* $\partial g(x,y)$

$$
\frac{\partial f\circ g(x,y)}{\partial x}=\frac{\partial f\circ g(x,y)}{\partial g(x,y)}
$$

 \equiv

The opposite operation of differentation is **integration**. Given a function $f(x)$, we search a function $F(x)$ whose derivative is $f(x)$:

There are tons of formal definitions of integrals (Riemann, Lebesgue, Darboux…) and we will not get into details here as we will not use integrals a lot.

$$
F'(x)=f(x)
$$

The integral of f is noted:

 $F(x) = \int f(x) \, dx$

 dx being an infinitesimal interval (similar to h in the definition of the derivative).

- The most important to understand for now is maybe that the integral of a function is the **area under the curve**.
- The area under the curve of a function f on the interval $\left[a,b\right]$ is:

 \equiv

Source: <https://www.math24.net/riemann-sums-definite-integral/>

 \equiv

- One way to approximate this surface is to split the interval $[a, b]$ into n intervals of width dx with the points $x_1, x_2, \ldots, x_n.$
- This defines n rectangles of width dx and height $f(x_i)$, so their surface is $f(x_i)\,dx.$
- The area under the curve can then be approximated by the sum of the surfaces of all these rectangles.

Source: <https://www.math24.net/riemann-sums-definite-integral/>

 \equiv

When $n\to\infty$, or equivalently $dx\to 0$, the sum of these rectangular areas (called the Riemann sum) becomes exactly the area under the curve. This is the definition of the definite integral:

Very roughly speaking, the integral can be considered as the equivalent of a sum for continuous functions.

$$
\int_a^b f(x)\,dx=\lim_{dx\to 0}\sum_{i=1}^n f
$$

Source: <https://www.math24.net/riemann-sums-definite-integral/>

 $f(x_i)\,dx$

3 - Probability theory

Discrete probability distributions

- outcomes) $x_1, \ldots, x_n.$
- x_i , when the total number N of samples tends to infinity:

The **probability** that X takes the value x_i is defined by the *relative frequency of occurrence*, i.e. the proportion of samples having the value

Credit: [https://commons.wikimedia.org/wiki/File:2-](https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg) Dice-Icon.svg

 \equiv

- The set of probabilities $\{P(X=x_i)\}_{i=1}^n$ define the **probability distribution** for the random variable (or probability mass function, pmf).
- By definition, we have $0 \leq P(X=x_i) \leq 1$ and the probabilities **have** to respect:

$$
P(X=x_i)=\frac{\rrbracket}{}
$$

Total number of samples Number of favorable cases

$$
\sum_{i=1}^n P(X=x_i)=1
$$

Let's note X a **discrete random variable** with n realizations (or

Mathematical expectation and variance

An important metric for a random variable is its **mathematical expectation** or expected value, i.e. its "mean" realization weighted by the probabilities:

The expectation does not even need to be a valid realization:

We can also compute the mathematical expectation of **functions of** a random variable:

 \equiv

$$
\mathbb{E}[X] = \sum_{i=1}^n P(X = x_i
$$

$$
\mathbb{E}[\text{Coin}] = \frac{1}{2} \, 0 + \frac{1}{2} \, 1 =
$$
\n
$$
\mathbb{E}[\text{Dice}] = \frac{1}{6} \, (1 + 2 + 3 + 4 +
$$

$$
\mathbb{E}[f(X)] = \sum_{i=1}^n P(X=x
$$

 $\left(x_i\right)x_i$

 $1=0.5$

 $(5+6)=3.5$

 $x_i) \, f(x_i)$

Mathematical expectation and variance

The **variance** of a random variable is the squared deviation around the mean:

Variance of a coin:

Variance of a dice:

$$
\mathrm{Var}(X) = \mathbb{E}[(X-\mathbb{E}[X])^2] = \sum_{i=1}^n P(X=x_i) \, (x_i-\mathbb{E}[X])^2
$$

$$
\rm Var(Coin) = \frac{1}{2} \, (0 - 0.5)^2 + \frac{1}{2} \, (1
$$

$$
(1-0.5)^2=0.25\,
$$

$$
\mathrm{Var}(\mathrm{Dice}) = \frac{1}{6}\left((1-3.5)^2 + (2-3.5)^2 + (3-3.5)^2 + (4-3.5)^2 + (5-3.5)^2 + (6-3.5)^2\right) = \frac{105}{36}
$$

Continuous probability distributions

- **Continuous random variables** can take an infinity of continuous values, e.g. \Re or some subset.
- The closed set of values they can take is called the **support** \mathcal{D}_X of the probability distribution.
- The probability distribution is described by a **probability** \bm{d} ensity function (pdf) $f(x)$.
- The pdf of a distribution must be positive ($f(x)\geq 0\,\forall x\in\mathbb{R}$ \mathcal{D}_X) and its integral must be equal to 1:

The pdf does not give the probability of taking a particular value x (it is 0), but allows to get the probability that a value lies in a specific interval:

Source: https://en.wikipedia.org/wiki/Normal_distribution

 \equiv

$$
\int_{x\in \mathcal{D}_X} f(x)\,dx=1
$$

 $f(x) dx$

$$
P(a\leq X\leq b)=\int_{a}^{b}f(a
$$

One can however think of the pdf as the **likelihood** that a value x comes from that distribution.

Expectation and variance of continuous distributions

The mathematical expectation is now defined by an integral instead of a sum:

the variance:

 \equiv

 $\text{Var}(X) = \int \quad f(x) \, (x - y)$ *x*∈D*^X* $\mathbb{E}[X])^2\,dx$

or a function of the random variable:

Note that the expectation operator is **linear**:

$$
\mathbb{E}[a\, X + b\, Y] = a\, \mathbb{E}[X] +
$$

 $g(x)\,dx$

 $+~b\,\mathbb{E}[Y]$

$$
\mathbb{E}[X] = \int_{x \in \mathcal{D}_X} f(x) \, x \, dx
$$

$$
\mathbb{E}[g(X)]=\int_{x\in\mathcal{D}_X}f(x)\,g
$$

Some parameterized probability distributions

- Probability distributions can in principle have any form: $f(x)$ is unknown.
- However, specific parameterized distributions can be very useful: their pmf/pdf is fully determined by a couple of parameters.
- The **Bernouilli** distribution is a binary (discrete, 0 or 1) distribution with a parameter p specifying the probability to obtain the outcome 1:

$$
P(X=1)=p \text{ and } P(X=0)=1-p
$$

$$
P(X=x)=p^x\,(1-p)^{1-x}
$$

$$
\mathbb{E}[X]=p
$$

The **Multinouilli** or **categorical** distribution is a discrete distribution with k realizations. Each realization x_i is associated with a parameter $p_i > 0$ representing its probability. We have $\sum_i p_i = 1.$

$$
P(X=x_i)=p_i\,
$$

Knowing p or the p_i tells us everything about the discrete distributions.

The uniform distribution

- The **uniform distribution** has an equal and constant probability of returning values between a and b , never outside this range.
- It is parameterized by two parameters:
	- the start of the range a .
	- the end of the range b .
	- Its support is $\left[a,b\right]$.

Credit: [https://en.wikipedia.org/wiki/Uniform_distribution_\(continuous\)](https://en.wikipedia.org/wiki/Uniform_distribution_(continuous))

The pdf of the uniform distribution $\mathcal{U}(a,b)$ is defined on $[a,b]$ as:

$$
f(x;a,b)=\frac{1}{b-a}
$$

Knowing a and b completely defines the distribution.

The normal or Gaussian distribution

For continuous distributions, the **normal distribution** is the most frequently encountered

• It is parameterized by two parameters:

the mean μ .

the variance σ^2 (or standard deviation σ).

Credit: https://en.wikipedia.org/wiki/Normal_distribution

 \equiv

The pdf of the normal distribution $\mathcal{N}(\mu, \sigma)$ is defined on \Re as:

$$
f(x;\mu,\sigma)=\frac{1}{\sqrt{2\,\pi\,\sigma^2}}\,e^{\displaystyle\frac{(x-\mu)^2}{2\,\sigma^2}}
$$

Knowing μ and σ completely defines the distribution.

The exponential distribution

The **exponential distribution** is the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate.

• It is parameterized by one parameter:

the rate λ .

Its support is \real^+ $(x>0).$

Credit: https://en.wikipedia.org/wiki/Exponential_distribution

The pdf of the exponential distribution is defined on \real^+ as:

$$
f(x;\lambda)=\lambda\,e^{-\lambda\,x}
$$

Knowing λ completely defines the distribution.

Joint probabilities

 \equiv

- Let's now suppose that we have two random variables X and Y with different probability distributions $P(X)$ and $P(Y)$.
- The **joint probability** $P(X,Y)$ denotes the probability of observing the realizations x **and** y at the same time:

If the random variables are **independent**, we have:

If you know the joint probability, you can compute the **marginal probability distribution** of each variable:

The same is true for continuous probability distributions:

$$
P(X=x,Y=y)
$$

$$
P(X=x,Y=y)=P(X=x)\,P(Y=y)
$$

$$
P(X=x)=\sum_y P(X=x
$$

$$
f(x)=\int f(x,y)\,dy
$$

 $x, Y = y$

Conditional probabilities

- Some useful information between two random variables is the **conditional probability**.
- $P(X = x | Y = y)$ is the conditional probability that $X = x$, **given** that $Y = y$ is observed.
- $Y=y$ is not random anymore: it is a **fact** (at least theoretically).
- You wonder what happens to the probability distribution of X now that you know the value of Y .
- Conditional probabilities are linked to the joint probability by:

- If X and Y are **independent**, we have $P(X = x | Y = y) = P(X = x)$ (knowing Y does not change anything to the probability distribution of X).
- We can use the same notation for the complete probability distributions:

$$
P(X=x|Y=y)=\frac{P(X=x,Y=y)}{P(Y=y)}
$$

$$
P(X|Y) = \frac{P(X,Y)}{P(Y)}
$$

Joint and conditional probabilities: using a Venn diagram

You ask 50 people whether they like cats or dogs:

■ 18 like both cats and dogs.

- -
	- 21 like only dogs.
	- 5 like only cats.
	- 6 like none of them.
- We consider loving cats and dogs as random variables (and that our sample size is big enough to use probabilities…)
- \bullet We have
- loves dogs?

- The joint probability of loving both cats and dogs is $P(\mathrm{cat}, \mathrm{dog}) = \frac{18}{50}.$
- The conditional probability of loving dogs given one loves cats is:

Credit: <https://www.elevise.co.uk/g-e-m-h-5-u.html>

 \equiv

$$
P(\rm{dog})=\tfrac{18+21}{50} \text{ and } P(\rm{cat})=\tfrac{18+5}{50}.
$$

• Among the 23 who love cats, which proportion also

$$
\log\big) = \frac{18}{50}.
$$

$$
P(\rm {dog|cat}) = \frac{P({cat, dog})}{P({cat})} =
$$

$$
=\frac{\frac{18}{50}}{\frac{23}{50}}=\frac{18}{23}
$$

Bayes' rule

 \equiv

Noticing that the definition of conditional probabilities is symmetric:

$$
P(X,Y)=P(X|Y)\,P(Y)=F
$$

we can obtain the **Bayes' rule**:

$$
P(Y|X) = \frac{P(X|Y)\,P}{P(X)}
$$

- It is very useful when you already know $P(X|Y)$ and want to obtain $P(Y|X)$ (**Bayesian inference**).
	- $P(Y|X)$ is called the **posterior probability**.
	- $P(X|Y)$ is called the likelihood.
	- $P(Y)$ is called the prior probability (belief).
	- $P(X)$ is called the **model evidence** or **marginal likelihood**.

 $P(Y|X) \, P(X)$

P(*X*∣*Y*) *P*(*Y*)

Bayes' rule : example

 \equiv

Let's consider a disease D (binary random variable) and a medical test T (also binary). The disease affects 10% of the general population:

When a patient has the disease, the test is positive 80% of the time:

$$
P(T=1|D=1)=0.8\qquad \qquad P(T
$$

When a patient does not have the disease, the test is still positive 10% of the time:

Given that the test is positive, what is the probability that the patient is ill?

 $P=0|D=1) = 0.2$

$$
P(D=1)=0.1\qquad \qquad P(D=0)=0.9
$$

$$
P(T=1|D=0)=0.1\qquad \qquad P(T=0|D=0)=0.9
$$

Bayes' rule : example $P(D=1|T=1) =$ $P(T=1)$ $P(T=1|D=1)\,P(D=1)$

$$
= \frac{P(T=1|D=1)}{P(T=1|D=1)\,P(D=1)}
$$

$$
= \frac{0.8 \times 0.1}{0.8 \times 0.1 + 0.1 \times 0.9}
$$

 $= 0.47$

 \equiv

$P(T=1|D=1)\,P(D=1)+P(T=1|D=0)\,P(D=0)$ $P(T=1|D=1)\,P(D=1)$

4 - Statistics

Random sampling / Monte Carlo sampling

- In ML, we will deal with random variables whose exact probability distribution is unknown, but we are interested in their expectation or variance anyway.
- ${\bf R}$ andom sampling or Monte Carlo sampling (MC) consists of taking N samples x_i out of the distribution X (discrete or continuous) and computing the sample average:

More samples will be obtained where $f(x)$ is high (x is probable), so the average of the sampled data will be close to the expected value of the distribution.

Random sampling / Monte Carlo sampling Law of big numbers

- the samples are **i.i.d** (independent and identically distributed):
	- \circ independent: the samples must be unrelated with each other.
	- identically distributed: the samples must come from the same distribution X_{\cdot}
- the number of samples is large enough. Usually $N > 30$ for simple distributions.

MC estimates are only correct when:

 \equiv

As the number of identically distributed, randomly generated variables increases, their sample mean (average) approaches their theoretical mean.

Monte-carlo sampling

One can estimate any function of the random variable with random sampling:

$$
\mathbb{E}[f(X)] = \mathbb{E}_{x \sim X}[f(x)] \approx \frac{1}{N} \sum_{i=1}^N f(x_i)
$$

Example of Monte Carlo sampling to estimate $\pi/4$: $f(x_i) = 1$ if $||x_i|| \leq 1$, 0 otherwise.

Estimate of pi: 3.116

 \equiv

Estimate of pi: 3.142

Estimate of pi: 3.13872

Central limit theorem

 \equiv

- Suppose we have an unknown distribution X with expected value $\mu = \mathbb{E}[X]$ and variance $\sigma^2.$
- We can take randomly N samples from X to compute the sample average:

The **Central Limit Theorem** (CLT) states that:

The distribution of sample averages is normally distributed with mean μ and variance $\frac{\sigma^2}{N}.$ *N* σ^2

$$
S_N = \frac{1}{N}\sum_{i=1}^N x_i
$$

$$
S_N \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{N}})
$$

Central limit theorem

- If we perform the sampling multiple times, even with few samples, the average of the sampling averages will be very close to the expected value.
- The more samples we get, the smaller the variance of the estimates.
- Although the distribution X can be anything, the sampling averages are normally distributed.

Credit: https://en.wikipedia.org/wiki/Central_limit_theorem

Estimators

- CLT shows that the sampling average is an **unbiased estimator** of the expected value of a distribution:
	- $\mathbb{E}(S_N) = \mathbb{E}(X)$
- An estimator is a random variable used to measure parameters of a distribution (e.g. its expectation). The problem is that estimators can generally be **biased**.
- Take the example of a thermometer M measuring the temperature T . T is a random variable (normally distributed with $\mu = 20$ and $\sigma = 10$) and the measurements M relate to the temperature with the relation:

Estimators

 \equiv

- The thermometer is not perfect, but do random measurements allow us to estimate the expected value of the temperature?
- We could repeatedly take 100 random samples of the thermometer and see how the distribution of sample averages look like:

• But, as the expectation is linear, we actually have:

 $\mathbb{E}[M] = \mathbb{E}[0.95\,T + 0.65] = 0.95\, \mathbb{E}[T] + 0.65 = 19.65 \neq \mathbb{E}[T]$

The thermometer is a **biased estimator** of the temperature.

Estimators

 \equiv

- Let's note θ a parameter of a probability distribution X that we want to estimate (it does not have to be its mean).
- An $\mathop{\mathsf{estimator}}\nolimits\theta$ is a random variable mapping the sample space of X to a set of sample estimates. $\hat{\theta}$
- The **bias** of an estimator is the mean error made by the estimator:

The **variance** of an estimator is the deviation of the samples around the expected value:

X

 $]-\theta$

$$
\mathcal{B}(\hat{\theta}) = \mathbb{E}[\hat{\theta} - \theta] = \mathbb{E}[\hat{\theta}]
$$

$$
\mathrm{Var}(\hat{\theta}) = \mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2]
$$

- Ideally, we would like estimators with:
	- **Iow bias**: the estimations are correct on average (= equal to the true parameter).
	- **low variance**: we do not need many estimates to get a correct estimate (CLT: $\frac{O}{\sqrt{N}}$)

N σ

Estimators: bias and variance

- Unfortunately, the perfect estimator does not exist.
- Estimators will have a bias and a variance:
	- **Bias**: the estimated values will be wrong, and the policy not optimal.
	- **Variance**: we will need a lot of samples (trial and error) to have correct estimates.
- One usually talks of a **bias/variance** trade-off: if you have a small bias, you will have a high variance, or vice versa.
- In machine learning, bias corresponds to underfitting, variance to overfitting.

5 - Information theory

Information

- **Information theory** (Claude Shannon) asks how much information is contained in a probability distribution.
- Information is related to **surprise** or **uncertainty**: are the outcomes of a random variable surprising?
	- Almost certain outcomes ($P\sim 1$) are not surprising because they happen all the time.
	- Almost impossible outcomes ($P\sim 0$) are very surprising because they are very rare.

 \equiv

A useful measurement of how surprising is an outcome x is the self-information:

• Depending on which log is used, self-information has different units:

 \log_2 : bits or shannons.

 $\log_e = \ln$: nats.

• But it is just a rescaling, the base never matters.

$$
I(x)=-\log P(X=x)
$$

Entropy

- It measures the **uncertainty**, **randomness** or **information content** of the random variable.
- In the discrete case:

The **entropy** (or Shannon entropy) of a probability distribution is the expected value of the selfinformation of its outcomes:

$$
H(X) = \mathbb{E}_{x \sim X} [I(x)] = \mathbb{E}_{x \sim X} [-
$$

- The entropy of a Bernouilli variable is maximal \bullet when both outcomes are **equiprobable**.
- If a variable is **deterministic**, its entropy is minimal and equal to zero.

 $\log P(X = x)$

 1.2

 0.8

 0.6

 0.4

 0.2

 0.0

 0.0

Entropy of a coin (Bernouilli) 0.2 0.4 $1.0\,$ 0.6 0.8 p

$$
H(X) = -\sum_{x} P(x) \log P(x)
$$

continuous case:

$$
\sum_{\substack{\infty \\ \text{continuous} \\ \infty \\ \infty \\ \text{sum} \\ 0.6}
$$

• In the continuous case:

$$
H(X)=-\int_x f(x)\,\log f(x)\,dx
$$

Joint and conditional entropies

The **joint entropy** of two random variables X and Y is defined by:

If the variables are **independent**, we have:

$$
H(X,Y)=H(X)+H(Y)\qquad\text{or}\qquad
$$

• Both are related by:

 \equiv

 $H(X|Y) = H(X,Y) - H(Y)$

• The equivalent of Bayes' rule is:

 $H(Y|X) = H(X|Y) + H(Y) - H(X)$

$H(X|Y) = H(X)$

$$
H(X,Y)=\mathbb{E}_{x\sim X,y\sim Y}[-\log P(X=x,Y=y)]
$$

The **conditional entropy** of two random variables X and Y is defined by:

$$
H(X|Y)=\mathbb{E}_{x\sim X,y\sim Y}[-\log P(X=x|Y=y)]=\mathbb{E}_{x\sim X,y\sim Y}[-\log\frac{P(X=x,Y=y)}{P(Y=y)}]
$$

Mutual Information

 \equiv

The most important information measurement between two variables is the **mutual information** MI (or information gain):

$$
I(X,Y)=H(X)-H(X\vert Y)=E
$$

- It measures how much information the variable X holds on Y :
	- If the two variables are **independent**, the MI is 0 : X is as random, whether you know Y or not.

If the two variables are **dependent**, knowing Y gives you information on X , which becomes less random, i.e. less uncertain / surprising.

$$
I(X,Y)=0
$$

$$
I(X,Y)>0
$$

If you can fully predict X when you know Y , it becomes deterministic $(H(X|Y)=0)$ so the mutual information is maximal $(I(X,Y)=H(X)).$

 $H(Y) - H(Y|X)$

Cross-entropy

 \equiv

The ${\sf cross-entropy}$ between two distributions X and Y is defined as:

$$
H(X,Y)=\mathbb{E}_{x\sim X}[-\log P(
$$

- Beware that the notation $H(X,Y)$ is the same as the joint entropy, but it is a different concept!
- The cross-entropy measures the **negative log-likelihood** that a sample x taken from the distribution X could also come from the distribution $Y.$
- More exactly, it measures how many bits of information one would need to distinguish the two distributions X and $Y.$

 $(Y = x)$

- If the two distributions are the same *almost anywhere*, one cannot distinguish samples from the two distributions:
	- The cross-entropy is the same as the entropy of $X.$
- If the two distributions are completely different, one can tell whether a sample Z comes from X or Y :
	- The cross-entropy is higher than the entropy of $X.$

$$
(Y=x)]
$$

Kullback-Leibler divergence

In practice, the **Kullback-Leibler divergence** $\mathrm{KL}(X||Y)$ is a better measurement of the similarity (statistical distance) between two probability distributions:

- If the two distributions are the same *almost anywhere*:
	- **The KL divergence is zero.**
- If the two distributions are different:

 \equiv

- **The KL divergence is positive.**
- Minimizing the KL between two distributions is the same as making the two distributions "equal".
- Again, the KL is not a metric, as it is not symmetric.

$$
\mathrm{KL}(X||Y) = \mathbb{E}_{x \sim X}[-\log \frac{P(Y=x)}{P(X=x)}]
$$

• It is linked to the cross-entropy by:

$$
\mathrm{KL}(X||Y) = H(X,Y) -
$$

KL(*X*∣∣*Y*) = *H*(*X*, *Y*) − *H*(*X*)