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1 - Linear algebra
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Mathematical objects
Scalars  are 0-dimensional values. They can either take real values ( , e.g.  , floats in
CS) or natural values ( , e.g.  , integers in CS).

Vectors  are 1-dimensional arrays of length .

The bold notation  will be used in this course, but you may also be accustomed to the arrow notation 
used on the blackboard. When using real numbers, the vector space with  dimensions is noted , so
we can note .

Vectors are typically represented vertically to outline their  elements :

x x ∈ ℜ x = 1.4573
x ∈ N x = 3

x d

x x

d ℜd

x ∈ ℜd

d x ​,x ​, … ,x ​1 2 d

x = ​ ​ ​

⎣
⎡x ​1

x ​2

⋮
x ​d
⎦
⎤
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Mathematical objects
Matrices  are 2-dimensional arrays of size (or shape)  (  rows,  columns, ).

They are represented by a capital letter to distinguish them from scalars (classically also in bold  but
not here). The element  of a matrix  is the element on the -th row and -th column.

Tensors  are arrays with more than two dimensions. We will not really do math on these objects, but
they are useful internally (hence the name of the tensorflow library).

A m × n m n A ∈ ℜm×n

A
a ​ij A i j

A = ​ ​ ​ ​ ​ ​

⎣
⎡ a ​11

a ​21

⋮
a ​m1

a ​12

a ​22

⋮
a ​m2

⋯
⋯

⋱
⋯

a ​1n

a ​2n

⋮
a ​mn

⎦
⎤

A

5
/
70



Vectors
A vector can be thought of as the coordinates of a point in an Euclidean space (such the 2D space),
relative to the origin.

A vector space relies on two fundamental operations, which are that:

Vectors can be added:

Vectors can be multiplied by a scalar:

x + y = ​ ​ ​ +

⎣
⎡x ​1

x ​2

⋮
x ​d
⎦
⎤

​ ​ ​ =

⎣
⎡y ​1

y ​2

⋮
y ​d
⎦
⎤

​ ​ ​

⎣
⎡x ​ + y ​1 1

x ​ + y ​2 2

⋮
x ​ + y ​d d

⎦
⎤

ax = a ​ ​ ​ =

⎣
⎡x ​1

x ​2

⋮
x ​d
⎦
⎤

​ ​ ​

⎣
⎡a x ​1

a x ​2

⋮
a x ​d

⎦
⎤

Source: https://mathinsight.org/image/vector_2d_add
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Properties of vector spaces
These two operations generate a lot of nice properties (see 
for a full list), including:

associativity:

commutativity:

the existence of a zero vector

inversion:

distributivity:

https://en.wikipedia.org/wiki/Vector_space

x+ (y + z) = (x+ y) + z

x+ y = y + x

x+ 0 = x

x+ (−x) = 0

a (x+ y) = ax+ ay
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Norm of a vector
Vectors have a norm (or length) . The most intuitive one (if you know the Pythagoras
theorem) is the Euclidean norm or -norm, which sums the square of each element:

Other norms exist, distinguished by the subscript. The -norm (also called the
Manhattan norm) sums the absolute value of each element:

The p-norm generalizes the Euclidean norm to other powers :

The infinity norm (or maximum norm)  returns the maximum element of the vector:

∣∣x∣∣
L2

∣∣x∣∣ ​ =2 ​x ​ + x ​ + … + x ​1
2

2
2

d
2

L1

∣∣x∣∣ ​ =1 ∣x ​∣ +1 ∣x ​∣ +2 … + ∣x ​∣d

p

∣∣x∣∣ ​ =p (∣x ​∣ +1
p ∣x ​∣ +2

p … + ∣x ​∣ )d
p ​

p
1

L∞

∣∣x∣∣ ​ =∞ max(∣x ​∣, ∣x ​∣, … , ∣x ​∣)1 2 d

https://en.wikipedia.org/wiki/Norm_(mathematics) 8
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Dot product
One important operation for vectors is the dot product (also called scalar product or inner product)
between two vectors:

The dot product basically sums one by one the product of the elements of each vector. The angular
brackets are sometimes omitted ( ) but we will use them in this course for clarity.

One can notice immediately that the dot product is symmetric:

and linear:

⟨x ⋅ y⟩ = ⟨ ​ ​ ​ ⋅

⎣
⎡x ​1

x ​2

⋮
x ​d
⎦
⎤

​ ​ ​⟩ =

⎣
⎡y ​1

y ​2

⋮
y ​d
⎦
⎤

x ​ y ​ +1 1 x ​ y ​ +2 2 … + x ​ y ​d d

x ⋅ y

⟨x ⋅ y⟩ = ⟨y ⋅ x⟩

⟨(ax + by) ⋅ z⟩ = a ⟨x ⋅ z⟩ + b ⟨y ⋅ z⟩
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Dot product
The dot product is an indirect measurement of the
angle  between two vectors:

If you normalize the two vectors by dividing them
by their norm (which is a scalar), we indeed have
the cosine of the angle between them

The higher the normalized dot product, the more
the two vectors point towards the same direction
(cosine distance between two vectors).

θ

⟨x ⋅ y⟩ = ∣∣x∣∣ ​ ∣∣y∣∣ ​ cos(θ)2 2

⟨ ​ ⋅
∣∣x∣∣2

x
​ ⟩ =

∣∣y∣∣ ​2

y
cos(θ)

Source: https://mathinsight.org/image/dot_product_projection_unit_vector
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Matrices
Matrices are derived from vectors, so most of the previous properties will be true. Let’s consider this 4x3
matrix:

Each column of the matrix is a vector with 4 elements:

A  matrix is therefore a collection of  vectors of size  put side by side column-wise:

A = ​ ​ ​ ​ ​

⎣
⎡a ​11

a ​21

a ​31

a ​41

a ​12

a ​22

a ​32

a ​42

a ​13

a ​23

a ​33

a ​43
⎦
⎤

a ​ =1 ​ ​ ​ a ​ =

⎣
⎡a ​11

a ​21

a ​31

a ​41
⎦
⎤

2 ​ ​ ​ a ​ =

⎣
⎡a ​12

a ​22

a ​32

a ​42
⎦
⎤

3 ​ ​ ​

⎣
⎡a ​13

a ​23

a ​33

a ​43
⎦
⎤

m × n n m

A = ​ ​ ​[a ​1 a ​2 a ​3]
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Properties of matrix spaces
All properties of the vector spaces (associativity, commutativity, distributivity) also apply to matrices, as
additions and multiplications with a scalar are defined.

Note: Beware, you can only add matrices of the same dimensions . You cannot add a  matrix
to a  one.

αA + β B = ​ ​ ​ ​ ​

⎣
⎡αa ​ + β b ​11 11

αa ​ + β b ​21 21

αa ​ + β b ​31 31

αa ​ + β b ​41 41

αa ​ + β b ​12 12

αa ​ + β b ​22 22

αa ​ + β b ​32 32

αa ​ + β b ​42 42

αa ​ + β b ​13 13

αa ​ + β b ​23 23

αa ​ + β b ​33 33

αa ​ + β b ​43 43
⎦
⎤

m × n 2 × 3
5 × 4
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Transposition
The transpose  of a  matrix  is a  matrix, where the row and column indices are
swapped:

This is also true for vectors, which become horizontal after transposition:

AT m × n A n × m

A = ​ ​ ​ ​ , A =

⎣
⎡ a ​11

a ​21

⋮
a ​m1

a ​12

a ​22

⋮
a ​m2

⋯
⋯

⋱
⋯

a ​1n

a ​2n

⋮
a ​mn

⎦
⎤

T
​ ​ ​ ​ ​ ​

⎣
⎡a ​11

a ​12

⋮
a ​1n

a ​21

a ​22

⋮
a ​2n

⋯
⋯

⋱
⋯

a ​m1

a ​m2

⋮
a ​mn

⎦
⎤

x = ​ ​ ​ , x =

⎣
⎡x ​1

x ​2

⋮
x ​d
⎦
⎤

T
​ ​ ​ ​[x ​1 x ​2 … x ​d]
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Matrix multiplication
If  is a  matrix and  a  matrix:

we can multiply them to obtain a  matrix:

where each element  is the dot product of the th row of  and th column of :

Note: , the number of columns of  and rows of , must be the same!

A m × n B n × p

A = ​ ​ ​ ​ ​ ​ , B =

⎣
⎡ a ​11

a ​21

⋮
a ​m1

a ​12

a ​22

⋮
a ​m2

⋯
⋯

⋱
⋯

a ​1n

a ​2n

⋮
a ​mn

⎦
⎤

​ ​ ​ ​ ​ ​

⎣
⎡b ​11

b ​21

⋮
b ​n1

b ​12

b ​22

⋮
b ​n2

⋯
⋯

⋱
⋯

b ​1p

b ​2p

⋮
b ​np

⎦
⎤

m × p

C = A × B = ​ ​ ​ ​ ​ ​

⎣
⎡ c ​11

c ​21

⋮
c ​m1

c ​12

c ​22

⋮
c ​m2

⋯
⋯

⋱
⋯

c ​1p

c ​2p

⋮
c ​mp

⎦
⎤

c ​ij i A j B

c ​ =ij ⟨A ​ ⋅i,: B ​⟩ =:,j a ​b ​ +i1 1j a ​b ​ +i2 2j ⋯ + a ​b ​ =in nj ​a ​b ​

k=1

∑
n

ik kj

n A B
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Matrix multiplication
The element  of  is the dot product between the th row of  and the th column of .

Source:

CC BY-NC-SA; Marcia Levitus

c ​ij C = A × B i A j B

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Book%3A_Mathematical_Methods_in_Chemistry_(Levitus)/15%3A_
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Matrix-vector multiplication
Thinking of vectors as  matrices, we can multiply a
matrix  with a vector:

The result  is a vector of size .

In that sense, a matrix  can transform a vector of size  into
a vector of size :

 represents a projection from  to .

n × 1
m × n

y = A × x = ​ ​ ​ ​ ​ ​ ×

⎣
⎡ a ​11

a ​21

⋮
a ​m1

a ​12

a ​22

⋮
a ​m2

⋯
⋯

⋱
⋯

a ​1n

a ​2n

⋮
a ​mn

⎦
⎤

​ ​ ​ =

⎣
⎡x ​1

x ​2

⋮
x ​n
⎦
⎤

​ ​ ​

⎣
⎡y ​1

y ​2

⋮
y ​m
⎦
⎤

y m

A n

m

A ℜn ℜm Source:
https://en.wikipedia.org/wiki/Homogeneous_coordinate
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Dot product
Note that the dot product between two vectors of size  is the matrix multiplication between the
transpose of the first vector and the second one:

n

x ×T y = ​ ​ ​ ​ ×[x ​1 x ​2 … x ​n] ​ ​ ​ =

⎣
⎡y ​1

y ​2

⋮
y ​n
⎦
⎤

x ​ y ​ +1 1 x ​ y ​ +2 2 … + x ​ y ​ =n n ⟨x ⋅ y⟩
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Matrix inversion
Square matrices of size  can be inverted. The inverse  of a matrix  is defined by:

where  is the identity matrix (a matrix with ones on the diagonal and 0 otherwise).

Matrix inversion allows to solve linear systems of equations. Given the problem:

which is equivalent to:

We can multiply both sides to the left with  (if it exists) and obtain:

n × n A−1 A

A × A =−1 A ×−1 A = I

I

​ ​

⎩
⎨
⎧a ​ x ​ + a ​ x ​ + … + a ​ x ​ = b ​11 1 12 2 1n n 1

a ​ x ​ + a ​ x ​ + … + a ​ x ​ = b ​21 1 22 2 2n n 2

…
a ​ x ​ + a ​ x ​ + … + a ​ x ​ = b ​n1 1 n2 2 nn n n

A × x = b

A−1

x = A ×−1 b
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2 - Calculus

19
/
70



Univariate functions
A univariate function  associates to any real number  (or a subset of  called the support of the
function) another (unique) real number :

f x ∈ ℜ ℜ
f(x)

​ ​

f : ℜ

x

→ ℜ

↦ f(x),

(1)

(2)
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Multivariate functions
A multivariate function  associates to any vector 

 (or a subset) a real number :

The variables of the function are the elements of
the vector.

For low-dimensional vector spaces, it is possible to
represent each element explicitly, for example:

f

x ∈ ℜn f(x)

​ ​

f : ℜn

x
→ ℜ

↦ f(x),

(3)

(4)

​ ​

f : ℜ3

x, y, z
→ ℜ
↦ f(x, y, z),

(5)
(6)

Source: https://en.wikipedia.org/wiki/Function_of_several_real_variables
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Vector fields
Vector fields associate to any vector  (or a subset) another vector (possibly of different size):

Source: 

Note: The matrix-vector multiplication  is a linear vector field, mapping any vector  into
another vector .

x ∈ ℜn

​ ​

​: ℜf n

x

→ ℜm

↦ ​(x),f

(7)

(8)

https://en.wikipedia.org/wiki/Vector_field

y = A × x x
y
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Differentiation
Differential calculus deals with the derivative of a
function, a process called differentiation.

The derivative  or  of a univariate

function  is defined as the local slope of the
tangent to the function for a given value of :

The line passing through the points  and 
 becomes tangent to the

function when  becomes very small.

f (x)′
​

dx

df(x)

f(x)
x

f (x) =′
​ ​

h→0
lim

h

f(x + h) − f(x)

(x, f(x))
(x + h, f(x + h))

h
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Differentiation
The sign of the derivative tells you how the function
behaves locally:

If the derivative is positive, increasing a little bit
 increases the function , so the function

is locally increasing.

If the derivative is negative, increasing a little
bit  decreases the function , so the
function is locally decreasing.

It basically allows you to measure the local
influence of  on : if I change a little bit the
value , what happens to ? This will be very
useful in machine learning.

x f(x)

x f(x)

x f(x)
x f(x)
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Extrema
A special case is when the derivative is equal to 0
in .  is then called an extremum (or optimum) of
the function, i.e. it can be a maximum or minimum.

You can tell whether an extremum is a maximum or
a minimum by looking at its second-order
derivative:

If , the extremum is a minimum.

If , the extremum is a maximum.

If , the extremum is a saddle point.

x x

f (x) >′′ 0

f (x) <′′ 0

f (x) =′′ 0
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Gradients
The derivative of a multivariate function  is a vector of partial derivatives called the gradient of the
function :

The subscript to the  operator denotes with respect to (w.r.t) which variable the differentiation is done.

f(x)
∇ ​ f(x)x

∇ ​ f(x) =x ​ ​ ​

⎣

⎡
​

∂x ​1

∂f(x)

​

∂x ​2

∂f(x)

…

​

∂x ​n

∂f(x)⎦

⎤

∇
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Partial derivatives
A partial derivative w.r.t. to particular variable (or element of the vector) is simply achieved by
differentiating the function while considering all other variables to be constant. For example the function:

can be partially differentiated w.r.t.  and  as:

f(x, y) = x +2 3x y + 4x y −2 1

x y

​ ​

⎩
⎨
⎧

​ = 2x + 3 y + 4 y
∂x

∂f(x, y) 2

​ = 3x + 8x y
∂y

∂f(x, y)
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Jacobian
The gradient can be generalized to vector fields, where the Jacobian or Jacobi matrix is a matrix
containing all partial derivatives.

J = ​ ​ ​ =[ ​

∂x ​1

∂f
⋯ ​

∂x ​n

∂f ] ​ ​ ​ ​ ​

⎣

⎡
​

∂x ​1

∂f ​1

⋮

​

∂x ​1

∂f ​m

⋯

⋱

⋯

​

∂x ​n

∂f ​1

⋮

​

∂x ​n

∂f ​m ⎦

⎤
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Analytical properties
Differentiation is linear, which means that if we define the function:

its derivative is:

A product of functions can also be differentiated analytically (product rule):

Example:

h(x) = a f(x) + b g(x)

h (x) =′ a f (x) +′ b g (x)′

(f(x) × g(x)) =′ f (x) ×′ g(x) + f(x) × g (x)′

f(x) = x e2 x

f (x) =′ 2x e +x x ⋅2 ex
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Chain rule
A very important concept for neural networks is the chain rule, which tells how to differentiate function
compositions (functions of a function) of the form:

The derivative of  is:

The chain rule may be more understandable using Leibniz’s notation:

By posing  as an intermediary variable, it becomes:

(f ∘ g)(x) = f(g(x))

f ∘ g

(f ∘ g) (x) =′ (f ∘′ g)(x) × g (x)′

​ =
dx

d(f ∘ g)(x)
×

dg(x)
df(g(x))

​

dx

dg(x)

y = g(x)

​ =
dx

df(y)
​ ×

dy

df(y)
​

dx

dy
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Chain rule
The function :

is the function composition of  and , whose derivatives are known:

Its derivative according to the chain rule is:

h(x) = ​

2x + 1
1

g(x) = 2x + 1 f(x) = ​

x

1

g (x) =′ 2

f (x) =′ − ​

x2

1

h (x) =′ f (g(x)) ×′ g (x) =′ − ​ ×
(2x + 1)2

1
2
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Chain rule
The chain rule also applies to partial derivatives:

and gradients:

​ =
∂x

∂f ∘ g(x, y)
​ ×

∂g(x, y)
∂f ∘ g(x, y)

​

∂x
∂g(x, y)

∇ ​ f ∘x g(x) = ∇ ​ f ∘g(x) g(x) × ∇ ​ g(x)x
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Integrals
The opposite operation of differentation is integration. Given a function , we search a function 
whose derivative is :

The integral of  is noted:

 being an infinitesimal interval (similar to  in the definition of the derivative).

There are tons of formal definitions of integrals (Riemann, Lebesgue, Darboux…) and we will not get into
details here as we will not use integrals a lot.

f(x) F (x)
f(x)

F (x) =′ f(x)

f

F (x) = f(x) dx∫
dx h
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Integrals
The most important to understand for now is maybe that the integral of a function is the area under the
curve.

The area under the curve of a function  on the interval  is:

Source: 

f [a, b]

S = ​ f(x) dx∫
a

b

https://www.math24.net/riemann-sums-definite-integral/
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Integrals
One way to approximate this surface is to split the interval  into  intervals of width  with the
points .

This defines  rectangles of width  and height , so their surface is .

The area under the curve can then be approximated by the sum of the surfaces of all these rectangles.

Source: 

[a, b] n dx

x ​,x ​, … ,x ​1 2 n

n dx f(x ​)i f(x ​) dxi

https://www.math24.net/riemann-sums-definite-integral/
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Integrals
When , or equivalently , the sum of these rectangular areas (called the Riemann sum)
becomes exactly the area under the curve. This is the definition of the definite integral:

Very roughly speaking, the integral can be considered as the equivalent of a sum for continuous
functions.

Source: 

n → ∞ dx → 0

​ f(x) dx =∫
a

b

​ ​f(x ​) dx
dx→0
lim

i=1

∑
n

i

https://www.math24.net/riemann-sums-definite-integral/
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3 - Probability theory
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Discrete probability distributions
Let’s note  a discrete random variable with  realizations (or
outcomes) .

The probability that  takes the value  is defined by the relative
frequency of occurrence, i.e. the proportion of samples having the value 

, when the total number  of samples tends to infinity:

The set of probabilities  define the probability distribution for the random variable (or
probability mass function, pmf).

By definition, we have  and the probabilities have to respect:

Credit:
https://commons.wikimedia.org/wiki/File:2-
Dice-Icon.svg

X n

x ​, … ,x ​1 n

X x ​i

x ​i N

P (X = x ​) =i ​

Total number of samples
Number of favorable cases

{P (X = x ​)} ​i i=1
n

0 ≤ P (X = x ​) ≤i 1

​P (X =
i=1

∑
n

x ​) =i 1
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Mathematical expectation and variance
An important metric for a random variable is its mathematical expectation or expected value, i.e. its
“mean” realization weighted by the probabilities:

The expectation does not even need to be a valid realization:

We can also compute the mathematical expectation of functions of a random variable:

E[X] = ​P (X =
i=1

∑
n

x ​)x ​i i

E[Coin] = ​ 0 +
2
1

​ 1 =
2
1

0.5

E[Dice] = ​ (1 +
6
1

2 + 3 + 4 + 5 + 6) = 3.5

E[f(X)] = ​P (X =
i=1

∑
n

x ​) f(x ​)i i
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Mathematical expectation and variance
The variance of a random variable is the squared deviation around the mean:

Variance of a coin:

Variance of a dice:

Var(X) = E[(X − E[X]) ] =2
​P (X =

i=1

∑
n

x ​) (x ​ −i i E[X])2

Var(Coin) = ​ (0 −
2
1

0.5) +2
​ (1 −

2
1

0.5) =2 0.25

Var(Dice) = ​ ((1 −
6
1

3.5) +2 (2 − 3.5) +2 (3 − 3.5) +2 (4 − 3.5) +2 (5 − 3.5) +2 (6 − 3.5) ) =2

36
105
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Continuous probability distributions
Continuous random variables can take an infinity of
continuous values, e.g.   or some subset.

The closed set of values they can take is called the support 
 of the probability distribution.

The probability distribution is described by a probability
density function (pdf) .

The pdf of a distribution must be positive (
) and its integral must be equal to 1:

The pdf does not give the probability of taking a particular value  (it is 0), but allows to get the
probability that a value lies in a specific interval:

One can however think of the pdf as the likelihood that a value  comes from that distribution.

Source: https://en.wikipedia.org/wiki/Normal_distribution

ℜ

D ​X

f(x)

f(x) ≥ 0 ∀x ∈
D ​X

​ f(x) dx =∫
x∈D ​X

1

x

P (a ≤ X ≤ b) = ​ f(x) dx∫
a

b

x
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Expectation and variance of continuous distributions
The mathematical expectation is now defined by an integral instead of a sum:

the variance:

or a function of the random variable:

Note that the expectation operator is linear:

E[X] = ​ f(x)x dx∫
x∈D ​X

Var(X) = ​ f(x) (x −∫
x∈D ​X

E[X]) dx2

E[g(X)] = ​ f(x) g(x) dx∫
x∈D ​X

E[aX + b Y ] = aE[X] + bE[Y ]
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Some parameterized probability distributions
Probability distributions can in principle have any form:  is unknown.

However, specific parameterized distributions can be very useful: their pmf/pdf is fully determined by a
couple of parameters.

The Bernouilli distribution is a binary (discrete, 0 or 1) distribution with a parameter  specifying the
probability to obtain the outcome 1:

The Multinouilli or categorical distribution is a discrete distribution with  realizations. Each realization 
 is associated with a parameter  representing its probability. We have .

Knowing  or the  tells us everything about the discrete distributions.

f(x)

p

P (X = 1) = p and P (X = 0) = 1 − p

P (X = x) = p (1 −x p)1−x

E[X] = p

k

x ​i p ​ >i 0 ​ p ​ =∑i i 1

P (X = x ​) =i p ​i

p p ​i
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The uniform distribution
The uniform distribution has an equal and constant
probability of returning values between  and ,
never outside this range.

It is parameterized by two parameters:

the start of the range .

the end of the range .

Its support is .

The pdf of the uniform distribution  is defined on  as:

Knowing  and  completely defines the distribution.

Credit: https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

a b

a

b

[a, b]

U(a, b) [a, b]

f(x; a, b) = ​

b − a

1

a b
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The normal or Gaussian distribution
For continuous distributions, the normal
distribution is the most frequently encountered
one.

It is parameterized by two parameters:

the mean .

the variance  (or standard deviation ).

Its support is .

The pdf of the normal distribution  is defined on  as:

Knowing  and  completely defines the distribution.

Credit: https://en.wikipedia.org/wiki/Normal_distribution

μ

σ2 σ

ℜ

N (μ,σ) ℜ

f(x;μ,σ) = ​ e
​2π σ2

1 − ​

2σ2

(x − μ)2

μ σ
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The exponential distribution
The exponential distribution is the probability
distribution of the time between events in a
Poisson point process, i.e., a process in which
events occur continuously and independently at a
constant average rate.

It is parameterized by one parameter:

the rate .

Its support is  ( ).

The pdf of the exponential distribution is defined on  as:

Knowing  completely defines the distribution.

Credit: https://en.wikipedia.org/wiki/Exponential_distribution

λ

ℜ+ x > 0

ℜ+

f(x;λ) = λ e−λ x

λ
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Joint probabilities
Let’s now suppose that we have two random variables  and  with different probability distributions 

 and .

The joint probability  denotes the probability of observing the realizations  and  at the same
time:

If the random variables are independent, we have:

If you know the joint probability, you can compute the marginal probability distribution of each variable:

The same is true for continuous probability distributions:

X Y

P (X) P (Y )

P (X,Y ) x y

P (X = x,Y = y)

P (X = x,Y = y) = P (X = x)P (Y = y)

P (X = x) = ​P (X =
y

∑ x,Y = y)

f(x) = f(x, y) dy∫
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Conditional probabilities
Some useful information between two random variables is the conditional probability.

 is the conditional probability that , given that  is observed.

 is not random anymore: it is a fact (at least theoretically).

You wonder what happens to the probability distribution of  now that you know the value of .

Conditional probabilities are linked to the joint probability by:

If  and  are independent, we have  (knowing  does not change
anything to the probability distribution of ).

We can use the same notation for the complete probability distributions:

P (X = x∣Y = y) X = x Y = y

Y = y

X Y

P (X = x∣Y = y) = ​

P (Y = y)
P (X = x,Y = y)

X Y P (X = x∣Y = y) = P (X = x) Y

X

P (X∣Y ) = ​

P (Y )
P (X,Y )
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Joint and conditional probabilities: using a Venn diagram
You ask 50 people whether they like cats or dogs:

18 like both cats and dogs.

21 like only dogs.

5 like only cats.

6 like none of them.

We consider loving cats and dogs as random
variables (and that our sample size is big enough to
use probabilities…)

We have  and .

Among the 23 who love cats, which proportion also
loves dogs?

The joint probability of loving both cats and dogs is .

The conditional probability of loving dogs given one loves cats is:

Credit: https://www.elevise.co.uk/g-e-m-h-5-u.html

P (dog) = ​50
18+21 P (cat) = ​50

18+5

P (cat, dog) = ​50
18

P (dog∣cat) = ​ =
P (cat)

P (cat, dog)
​ =

​50
23

​50
18

​

23
18
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Bayes’ rule
Noticing that the definition of conditional probabilities is symmetric:

we can obtain the Bayes’ rule:

It is very useful when you already know  and want to obtain  (Bayesian inference).

 is called the posterior probability.

 is called the likelihood.

 is called the prior probability (belief).

 is called the model evidence or marginal likelihood.

P (X,Y ) = P (X∣Y )P (Y ) = P (Y ∣X)P (X)

P (Y ∣X) = ​

P (X)
P (X∣Y )P (Y )

P (X∣Y ) P (Y ∣X)

P (Y ∣X)

P (X∣Y )

P (Y )

P (X)
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Bayes’ rule : example
Let’s consider a disease  (binary random variable) and a medical test  (also binary). The disease
affects 10% of the general population:

When a patient has the disease, the test is positive 80% of the time:

When a patient does not have the disease, the test is still positive 10% of the time:

Given that the test is positive, what is the probability that the patient is ill?

D T

P (D = 1) = 0.1 P (D = 0) = 0.9

P (T = 1∣D = 1) = 0.8 P (T = 0∣D = 1) = 0.2

P (T = 1∣D = 0) = 0.1 P (T = 0∣D = 0) = 0.9
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Bayes’ rule : example

P (D = 1∣T = 1) = ​

P (T = 1)
P (T = 1∣D = 1)P (D = 1)

= ​

P (T = 1∣D = 1)P (D = 1) + P (T = 1∣D = 0)P (D = 0)
P (T = 1∣D = 1)P (D = 1)

= ​

0.8 × 0.1 + 0.1 × 0.9
0.8 × 0.1

= 0.47
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4 - Statistics
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Random sampling / Monte Carlo sampling
In ML, we will deal with random variables whose exact probability distribution is unknown, but we are
interested in their expectation or variance anyway.

Random sampling or Monte Carlo sampling (MC) consists of taking  samples  out of the distribution
 (discrete or continuous) and computing the sample average:

More samples will be obtained where  is high (  is probable), so the average of the sampled data
will be close to the expected value of the distribution.

N x ​i

X

E[X] = E ​[x] ≈x∼X ​ ​x ​

N

1

i=1

∑
N

i

samples

f(x) x
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Random sampling / Monte Carlo sampling
Law of big numbers

MC estimates are only correct when:

the samples are i.i.d (independent and identically distributed):

independent: the samples must be unrelated with each other.

identically distributed: the samples must come from the same distribution .

the number of samples is large enough. Usually  for simple distributions.

As the number of identically distributed, randomly generated variables increases, their sample mean
(average) approaches their theoretical mean.

X

N > 30
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Monte-carlo sampling
One can estimate any function of the random variable with random sampling:

Example of Monte Carlo sampling to estimate :  if ,  otherwise.

E[f(X)] = E ​[f(x)] ≈x∼X ​ ​f(x ​)
N

1

i=1

∑
N

i

π/4 f(x ​) =i 1 ∣∣x ​∣∣ ≤i 1 0

Credit https://towardsdatascience.com/an-overview-of-monte-carlo-methods-675384eb1694 56
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Central limit theorem
Suppose we have an unknown distribution  with expected value  and variance .

We can take randomly  samples from  to compute the sample average:

The Central Limit Theorem (CLT) states that:

X μ = E[X] σ2

N X

S ​ =N ​ ​x ​

N

1

i=1

∑
N

i

The distribution of sample averages is normally distributed with mean  and variance .μ ​

N
σ2

S ​ ∼N N (μ, ​ )
​N

σ
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Central limit theorem
If we perform the sampling multiple times, even with few samples, the average of the sampling averages
will be very close to the expected value.

The more samples we get, the smaller the variance of the estimates.

Although the distribution  can be anything, the sampling averages are normally distributed.

Credit: 

X

https://en.wikipedia.org/wiki/Central_limit_theorem
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Estimators
CLT shows that the sampling average is an unbiased estimator of the expected value of a distribution:

An estimator is a random variable used to measure parameters of a distribution (e.g. its expectation). The
problem is that estimators can generally be biased.

Take the example of a thermometer  measuring the temperature .  is a random variable (normally
distributed with  and ) and the measurements  relate to the temperature with the
relation:

E(S ​) =N E(X)

M T T

μ = 20 σ = 10 M

M = 0.95T + 0.65
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Estimators
The thermometer is not perfect, but do random measurements allow us to estimate the expected value of
the temperature?

We could repeatedly take 100 random samples of the thermometer and see how the distribution of
sample averages look like:

But, as the expectation is linear, we actually have:

The thermometer is a biased estimator of the temperature.

E[M ] = E[0.95T + 0.65] = 0.95E[T ] + 0.65 = 19.65 = E[T ]
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Estimators
Let’s note  a parameter of a probability distribution  that we want to estimate (it does not have to be
its mean).

An estimator  is a random variable mapping the sample space of  to a set of sample estimates.

The bias of an estimator is the mean error made by the estimator:

The variance of an estimator is the deviation of the samples around the expected value:

Ideally, we would like estimators with:

low bias: the estimations are correct on average (= equal to the true parameter).

low variance: we do not need many estimates to get a correct estimate (CLT: )

θ X

θ̂ X

B( ) =θ̂ E[ −θ̂ θ] = E[ ] −θ̂ θ

Var( ) =θ̂ E[( −θ̂ E[ ]) ]θ̂ 2

​

​N

σ
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Estimators: bias and variance
Unfortunately, the perfect estimator
does not exist.

Estimators will have a bias and a
variance:

Bias: the estimated values will be
wrong, and the policy not optimal.

Variance: we will need a lot of
samples (trial and error) to have
correct estimates.

One usually talks of a bias/variance
trade-off: if you have a small bias, you
will have a high variance, or vice versa.

In machine learning, bias corresponds to
underfitting, variance to overfitting.
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5 - Information theory
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Information
Information theory (Claude Shannon) asks how much information is contained in a probability
distribution.

Information is related to surprise or uncertainty: are the outcomes of a random variable surprising?

Almost certain outcomes ( ) are not surprising because they happen all the time.

Almost impossible outcomes ( ) are very surprising because they are very rare.

A useful measurement of how surprising is an
outcome  is the self-information:

Depending on which log is used, self-information
has different units:

: bits or shannons.

: nats.

But it is just a rescaling, the base never matters.

P ∼ 1

P ∼ 0

x

I(x) = − logP (X = x)

log ​2

log ​ =e ln
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Entropy
The entropy (or Shannon entropy) of a probability distribution is the expected value of the self-
information of its outcomes:

It measures the uncertainty, randomness or information content of the random variable.

In the discrete case:

In the continuous case:

The entropy of a Bernouilli variable is maximal
when both outcomes are equiprobable.

If a variable is deterministic, its entropy is minimal
and equal to zero.

H(X) = E ​[I(x)] =x∼X E ​[− logP (X =x∼X x)]

H(X) = − ​P (x) logP (x)
x

∑

H(X) = − ​ f(x) log f(x) dx∫
x
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Joint and conditional entropies
The joint entropy of two random variables  and  is defined by:

The conditional entropy of two random variables  and  is defined by:

If the variables are independent, we have:

Both are related by:

The equivalent of Bayes’ rule is:

X Y

H(X,Y ) = E ​[− logP (X =x∼X,y∼Y x,Y = y)]

X Y

H(X∣Y ) = E ​[− logP (X =x∼X,y∼Y x∣Y = y)] = E ​[− log ​ ]x∼X,y∼Y
P (Y = y)

P (X = x,Y = y)

H(X,Y ) = H(X) + H(Y ) or H(X∣Y ) = H(X)

H(X∣Y ) = H(X,Y ) − H(Y )

H(Y ∣X) = H(X∣Y ) + H(Y ) − H(X)
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Mutual Information
The most important information measurement between two variables is the mutual information MI (or
information gain):

It measures how much information the variable  holds on :

If the two variables are independent, the MI is 0 :  is as random, whether you know  or not.

If the two variables are dependent, knowing  gives you information on , which becomes less
random, i.e. less uncertain / surprising.

If you can fully predict  when you know , it becomes deterministic ( ) so the mutual
information is maximal ( ).

I(X,Y ) = H(X) −H(X∣Y ) = H(Y ) −H(Y ∣X)

X Y

X Y

I(X,Y ) = 0

Y X

I(X,Y ) > 0

X Y H(X∣Y ) = 0
I(X,Y ) = H(X)
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Cross-entropy
The cross-entropy between two distributions  and  is defined as:

Beware that the notation  is the same as the joint entropy, but it is a different concept!

The cross-entropy measures the negative log-likelihood that a sample  taken from the distribution 
could also come from the distribution .

More exactly, it measures how many bits of information one would need to distinguish the two
distributions  and .

X Y

H(X,Y ) = E ​[− logP (Y =x∼X x)]

H(X,Y )

x X

Y

X Y

samples from X
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Cross-entropy

If the two distributions are the same almost anywhere, one cannot distinguish samples from the two
distributions:

The cross-entropy is the same as the entropy of .

If the two distributions are completely different, one can tell whether a sample  comes from  or :

The cross-entropy is higher than the entropy of .

samples from X

H(X,Y ) = E ​[− logP (Y =x∼X x)]

X

Z X Y

X
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Kullback-Leibler divergence
In practice, the Kullback-Leibler divergence  is a better measurement of the similarity
(statistical distance) between two probability distributions:

It is linked to the cross-entropy by:

If the two distributions are the same almost anywhere:

The KL divergence is zero.

If the two distributions are different:

The KL divergence is positive.

Minimizing the KL between two distributions is the same as making the two distributions “equal”.

Again, the KL is not a metric, as it is not symmetric.

KL(X∣∣Y )

KL(X∣∣Y ) = E ​[− log ​ ]x∼X
P (X = x)
P (Y = x)

KL(X∣∣Y ) = H(X,Y ) − H(X)
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