
Deep Reinforcement Learning
Bandits

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1 / 51

Outline
1. n-armed bandits

2. Sampling

3. Action selection

1. Greedy action selection

2. -greedy action selection

3. Softmax action selection

4. Optimistic initialization

5. Reinforcement comparison

�. Gradient bandit algorithm

7. Upper-Confidence-Bound action selection

4. Contextual bandits

ϵ

2 / 51

1 - n-armed bandits

3 / 51

Evaluative Feedback
RL evaluates actions through trial-and-error rather than comparing its predictions to the correct actions.

RL: evaluative feedback depends completely on the action taken.

SL: instructive feedback depends not at all on the action taken.

Evaluative feedback indicates how good the action is, but not whether it is the best or worst action
possible.

Associative learning: inputs are mapped to the best possible outputs (general RL).

Non-associative learning: finds one best output, regardless of the current state or past history
(bandits).

4 / 51

n-armed bandits
The n-armed bandit (or multi-armed bandit) is a non-associative evaluative feedback procedure.

Learning and action selection take place in the same single state.

The actions have different reward distributions.

The goal is to find out through trial and error which action provides the most reward on average.

n

5 / 51

n-armed bandits
We have the choice between different actions

.

Each action taken at time provides a reward
drawn from the action-specific probability
distribution .

The mathematical expectation of that distribution
is the expected reward, called the true value of the
action .

The reward distribution also has a variance: we usually ignore it in RL, as all we care about is the optimal
action (but see distributional RL later).

If we take the optimal action an infinity of times, we maximize the reward intake on average.

N

(a , ..., a)1 N

a t r t

r(a)

Q (a)∗

Q (a) =∗ E[r(a)]

a∗

a =∗ argmax Q (a)a
∗

6 / 51

n-armed bandits
The question is how to find out the optimal action through trial and error, i.e. without knowing the exact
reward distribution .

We only have access to samples of by taking
the action at time (a trial, play or step).

The received rewards vary around the true value
over time.

We need to build estimates of the value of
each action based on the samples.

These estimates will be very wrong at the
beginning, but should get better over time.

r(a)

r(a)
a t

r ∼t r(a)

r t

Q (a)t

7 / 51

2 - Sampling-based evaluation

8 / 51

Sampling-based evaluation
The expectation of the reward distribution can be
approximated by the mean of its samples:

Suppose that the action had been selected
times, producing rewards

The estimated value of action at play is then:

Over time, the estimated action-value converges to the true action-value:

E[r(a)] ≈ r ∣

N

1

t=1

∑
N

t a =at

a t

(r , r , ..., r)1 2 t

a t

Q (a) =t

t

r + r + ... + r 1 2 t

 Q (a) =
t→∞
lim t Q (a)∗

9 / 51

Online evaluation
The drawback of maintaining the mean of the received rewards is that it consumes a lot of memory:

It is possible to update an estimate of the mean in an online or incremental manner:

The estimate at time depends on the previous estimate at time and the last reward :

Q (a) =t =
t

r + r + ... + r 1 2 t
 r

t

1

i=1

∑
t

i

Q (a)t+1 = r = (r + r)
t + 1

1

i=1

∑
t+1

i
t + 1

1
t+1

i=1

∑
t

i

= (r + tQ (a))
t + 1

1
t+1 t

= (r + (t + 1)Q (a) − Q (a))
t + 1

1
t+1 t t

t + 1 t r t+1

Q (a) =t+1 Q (a) +t (r −
t + 1

1
t+1 Q (a))t

10 / 51

Online evaluation
The problem with the exact mean is that it is only exact when the reward distribution is stationary,
i.e. when the probability distribution does not change over time.

If the reward distribution is non-stationary, the term will become very small and prevent rapid
updates of the mean.

t+1
1

11 / 51

Online evaluation
The solution is to replace with a fixed parameter called the learning rate (or step size) :

The computed value is called a moving average (or sliding average), as if one used only a small window
of the past history.

t+1
1 α

Q (a)t+1 = Q (a) + α (r − Q (a))t t+1 t

= (1 − α)Q (a) + α r t t+1

12 / 51

Online evaluation
Moving average:

or:

The moving average adapts very fast to changes in
the reward distribution and should be used in non-
stationary problems.

It is however not exact and sensible to noise.

Choosing the right value for can be difficult.

The form of this update rule is very important to remember:

Estimates following this update rule track the mean of their sampled target values.

 is the prediction error between the target and the estimate.

Q (a) =t+1 Q (a) +t α (r −t+1 Q (a))t

ΔQ(a) = α (r −t+1 Q (a))t

α

new estimate = current estimate + α (target − current estimate)

target − current estimate

13 / 51

3 - Action selection

14 / 51

Action selection
Let’s suppose we have formed reasonable
estimates of the Q-values at time .

Which action should we do next?

If we select the next action randomly (random
agent), we do not maximize the rewards we receive,
but we can continue learning the Q-values.

Choosing the action to perform next is called
action selection and several schemes are possible.

Q (a)t t

a t+1

15 / 51

Action selection
1. Greedy action selection

2. -greedy action selection

3. Softmax action selection

4. Optimistic initialization

5. Reinforcement comparison

�. Gradient bandit algorithm

7. Upper-Confidence-Bound action selection

ϵ

16 / 51

Greedy action selection

The greedy action is the action whose estimated value is maximal at time based on our current
estimates:

If our estimates are correct (i.e. close from), the greedy action is the optimal action and we
maximize the rewards on average.

If our estimates are wrong, the agent will perform sub-optimally.

t

a =t
∗ argmax Q (a)a t

Q t Q∗

17 / 51

Greedy action selection

This defines the greedy policy, where the probability of taking the greedy action is 1 and the probability of
selecting another action is 0:

The greedy policy is deterministic: the action taken is always the same for a fixed .

π(a) = {1 if a = a t
∗

0 otherwise.

Q t

18 / 51

Problem with greedy action selection
Greedy action selection only works when the estimates are good enough.

19 / 51

Problem with greedy action selection
Estimates are initially bad (e.g. 0 here), so an action is sampled randomly and a reward is received.

20 / 51

Problem with greedy action selection
The Q-value of that action becomes positive, so it becomes the greedy action.

21 / 51

Problem with greedy action selection
Greedy action selection will always select that action, although the second one would have been better.

22 / 51

Exploration-exploitation dilemma

Source: UC Berkeley AI course ,

This exploration-exploitation dilemma is the hardest problem in RL:

Exploitation is using the current estimates to select an action: they might be wrong!

Exploration is selecting non-greedy actions in order to improve their estimates: they might not be
optimal!

One has to balance exploration and exploitation over the course of learning:

More exploration at the beginning of learning, as the estimates are initially wrong.

More exploitation at the end of learning, as the estimates get better.

slides lecture 11

23 / 51

http://ai.berkeley.edu/lecture_slides.html
http://ai.berkeley.edu/slides/Lecture%2011%20--%20Reinforcement%20Learning%20II/SP14%20CS188%20Lecture%2011%20--%20Reinforcement%20Learning%20II.pptx

-greedy action selection

-greedy action selection ensures a trade-off between exploitation and exploration.

The greedy action is selected with probability (with), the others with probability :

ϵ

ϵ

1 − ϵ 0 < ϵ < 1 ϵ

π(a) = {1 − ϵ if a = a t
∗

 otherwise.∣A∣−1
ϵ

24 / 51

-greedy action selection

The parameter controls the level of exploration: the higher , the more exploration.

One can set high at the beginning of learning and progressively reduce it to exploit more.

However, it chooses equally among all actions: the worst action is as likely to be selected as the next-to-
best action.

ϵ

ϵ ϵ

ϵ

25 / 51

Softmax action selection

Softmax action selection defines the probability of choosing an action using all estimated value.

It represents the policy using a Gibbs (or Boltzmann) distribution:

where is a positive parameter called the temperature.

π(a) =

 exp

a′

∑
τ

Q (a)t
′

exp

τ

Q (a)t

τ

26 / 51

Softmax action selection

Just as , the temperature controls the level of exploration:

High temperature causes the actions to be nearly equiprobable (random agent).

Low temperature causes the greediest actions only to be selected (greedy agent).

ϵ τ

27 / 51

Example of action selection for the 10-armed bandit
Procedure as in (Sutton and Barto, 2017):

N = 10 possible actions with Q-values randomly chosen in .

Each reward is drawn from a normal distribution depending on the selected action.

Estimates are initialized to 0.

The algorithms run for 1000 plays, and the results are averaged 200 times.

Q (a), ...,Q (a)∗
1

∗
10 N (0, 1)

r t N (Q (a), 1)∗

Q (a)t

28 / 51

Greedy action selection
Greedy action selection allows to get rid quite early of the actions with negative rewards.

However, it may stick with the first positive action it founds, probably not the optimal one.

The more actions you have, the more likely you will get stuck in a suboptimal policy.

29 / 51

-greedy action selection

-greedy action selection continues to explore after finding a good (but often suboptimal) action.

It is not always able to recognize the optimal action (it depends on the variance of the rewards).

ϵ

ϵ

30 / 51

Softmax action selection
Softmax action selection explores more consistently the available actions.

The estimated Q-values are much closer to the true values than with (-)greedy methods.ϵ

31 / 51

Greedy vs. -greedy

The greedy method learns faster at the beginning, but get stuck in the long-term by choosing suboptimal
actions (50% of trials).

-greedy methods perform better on the long term, because they continue to explore.

High values for provide more exploration, hence find the optimal action earlier, but also tend to deselect
it more often: with a limited number of plays, it may collect less reward than smaller values of .

ϵ

ϵ

ϵ

ϵ

32 / 51

Softmax vs. -greedy

The softmax does not necessarily find a better solution than -greedy, but it tends to find it faster
(depending on or), as it does not lose time exploring obviously bad solutions.

-greedy or softmax methods work best when the variance of rewards is high.

If the variance is zero (always the same reward value), the greedy method would find the optimal action
more rapidly: the agent only needs to try each action once.

ϵ

ϵ

ϵ τ

ϵ

33 / 51

Exploration schedule
A useful technique to cope with the exploration-exploitation dilemma is to slowly decrease the value of
or with the number of plays.

This allows for more exploration at the beginning of learning and more exploitation towards the end.

It is however hard to find the right decay rate for the exploration parameters.

ϵ

τ

34 / 51

Exploration schedule

The performance is worse at the beginning, as the agent explores with a high temperature.

But as the agent becomes greedier and greedier, the performance become more optimal than with a fixed
temperature.

35 / 51

Optimistic initial values
The problem with online evaluation is that it depends a lot on the initial estimates .

If the initial estimates are already quite good (expert knowledge), the Q-values will converge very fast.

If the initial estimates are very wrong, we will need a lot of updates to correctly estimate the true
values.

The influence of on fades quickly with , but that can be lost time or lead to a suboptimal
policy.

However, we can use this at our advantage with optimistic initialization.

Q 0

Q (a) = (1 − α)Q (a) + α r t+1 t t+1

→ Q (a) = (1 − α)Q (a) + α r 1 0 1

→ Q (a) = (1 − α)Q (a) + α r = (1 − α) Q (a) + (1 − α)α r + αr 2 1 2
2

0 1 2

Q 0 Q t (1 − α)t

36 / 51

Optimistic initial values
By choosing very high initial values for the estimates (they can only decrease), one can ensure that all
possible actions will be selected during learning by the greedy method, solving the exploration problem.

This leads however to an overestimation of the value of other actions.

37 / 51

Reinforcement comparison
Actions followed by large rewards should be made more likely to reoccur, whereas actions followed by
small rewards should be made less likely to reoccur.

But what is a large/small reward? Is a reward of 5 large or small?

Reinforcement comparison methods only maintain a preference for each action, which is not
exactly its Q-value.

The preference for an action is updated after each play, according to the update rule:

where is the moving average of the recently received rewards (regardless the action):

If an action brings more reward than usual (good surprise), we increase the preference for that action.

If an action brings less reward than usual (bad surprise), we decrease the preference for that action.

 and are two constant parameters.

p (a)t

p (a) =t+1 t p (a) +t t β (r −t)r~t

 r~t

 =r~t+1 +r~t α (r −t)r~t

β > 0 0 < α < 1

38 / 51

Reinforcement comparison
Preferences are updated by replacing the action-dependent Q-values by a baseline :

The preferences can be used to select the action using the softmax method just as the Q-values (without
temperature):

 r~t

p (a) =t+1 t p (a) +t t β (r −t)r~t

π (a) =t

 exp p (a)
a′

∑ t
′

exp p (a)t

39 / 51

Reinforcement comparison
Reinforcement comparison can be very effective, as it does not rely only on the rewards received, but also
on their comparison with a baseline, the average reward.

This idea is at the core of actor-critic architectures which we will see later.

The initial average reward can be set optimistically to encourage exploration. r~0

40 / 51

Gradient bandit algorithm
Instead of only increasing the preference for the executed action if it brings more reward than usual, we
could also decrease the preference for the other actions.

The preferences are used to select an action via softmax:

Update rule for the action taken :

Update rule for the other actions :

Update of the reward baseline:

a t

π (a) =t

 exp p (a)
a′

∑ t
′

exp p (a)t

a t

p (a) =t+1 t p (a) +t t β (r −t) (1 −r~t π (a))t t

a = a t

p (a) =t+1 p (a) −t β (r −t)π (a)r~t t

 =r~t+1 +r~t α (r −t)r~t

41 / 51

Gradient bandit algorithm
The preference can increase become quite high, making the policy greedy towards the end.

No need for a temperature parameter!

42 / 51

Gradient bandit algorithm
Gradient bandit is not always better than reinforcement comparison, but learns initially faster (depending
on the parameters and).α β

43 / 51

Upper-Confidence-Bound action selection
In the previous methods, exploration is controlled by an external parameter (or) which is global to
each action an must be scheduled.

A much better approach would be to decide whether to explore an action based on the uncertainty about
its Q-value:

If we are certain about the value of an action, there is no need to explore it further, we only have to
exploit it if it is good.

The central limit theorem tells us that the variance of a sampling estimator decreases with the number of
samples:

The distribution of sample averages is normally distributed with mean and variance .

The more you explore an action , the smaller the variance of , the more certain you are about the
estimation, the less you need to explore it.

ϵ τ

μ

N
σ2

S ∼N N (μ,)
 N

σ

a Q (a)t

44 / 51

Upper-Confidence-Bound action selection
Upper-Confidence-Bound (UCB) action selection is a greedy action selection method that uses an
exploration bonus:

 is the current estimated value of and is the number of times the action has already
been selected.

It realizes a balance between trusting the estimates and exploring uncertain actions which have
not been explored much yet.

The term is an estimate of the variance of . The sum of both terms is an upper-bound of

the true value .

When an action has not been explored much yet, the uncertainty term will dominate and the action be
explored, although its estimated value might be low.

When an action has been sufficiently explored, the uncertainty term goes to 0 and we greedily follow
.

a =t
∗ argmax Q (a) + c a [t

N (a)t

ln t]
Q (a)t a N (a)t a

Q (a)t

N (a)t

ln t Q (a)t

μ + σ

Q (a)t

45 / 51

Upper-Confidence-Bound action selection
The exploration-exploitation trade-off is automatically adjusted by counting visits to an action.

a =t
∗ argmax Q (a) + c a [t

N (a)t

ln t]

46 / 51

Upper-Confidence-Bound action selection
The “smart” exploration of UCB allows to find the optimal action faster.

47 / 51

Summary of evaluative feedback methods
Greedy, -greedy, softmax, reinforcement comparison, gradient bandit and UCB all have their own
advantages and disadvantages depending on the type of problem: stationary or not, high or low reward
variance, etc…

These simple techniques are the most useful ones for bandit-like problems: more sophisticated ones
exist, but they either make too restrictive assumptions, or are computationally intractable.

Take home messages:

1. RL tries to estimate values based on sampled rewards.

2. One has to balance exploitation and exploration throughout learning with the right action selection
scheme.

3. Methods exploring more find better policies, but are initially slower.

ϵ

48 / 51

4 - Contextual bandits

49 / 51

Contextual bandits

Source: https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-1-5-contextual-bandits-bff01d1aad9c

50 / 51

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-1-5-contextual-bandits-bff01d1aad9c

Contextual bandits

Recommender systems:

Actions: advertisements.

Context: user features / identity.

Reward: user clicked on the ad.

In contextual bandits, the obtained rewards do not
only depend on the action , but also on the state
or context :

For example, the n-armed bandit could deliver
rewards with different probabilities depending on:

who plays.

the time of the year.

the availability of funds in the casino.

The problem is simply to estimate instead
of …

Some efficient algorithms have been developed recently, for example:

Source: https://aws.amazon.com/blogs/machine-learning/power-
contextual-bandits-using-continual-learning-with-amazon-sagemaker-rl/

a

s

r ∼t+1 r(s, a)

Q(s, a)
Q(a)

Agarwal, A., Hsu, D., Kale, S., Langford, J., Li, L., and Schapire, R. E. (2014). Taming the Monster: A Fast
and Simple Algorithm for Contextual Bandits. in Proceedings of the 31 st International Conference on
Machine Learning (Beijing, China), 9. http://proceedings.mlr.press/v32/agarwalb14.pdf

51 / 51

https://aws.amazon.com/blogs/machine-learning/power-contextual-bandits-using-continual-learning-with-amazon-sagemaker-rl/
http://proceedings.mlr.press/v32/agarwalb14.pdf

