
Deep Reinforcement Learning
Markov Decision Process

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1
/
48

1 - Markov Decision Process

2
/
48

Markov Decision Process (MDP)
The kind of task that can be solved by RL is called a Markov Decision Process (MDP).

The environment is fully observable, i.e. the current
state completely characterizes the process at
time .

Actions provoke transitions between two states
 and .

State transitions are governed by
transition probabilities.

A reward is (probabilistically) associated to
each transition.

Note: n-armed bandits are MDPs with only one state.

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

s ​t

t

a ​t

s ​t s ​t+1

(s ​, a ​, s ​)t t t+1

r ​t+1

3
/
48

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Finite State Machine (FSM)
A finite state machine (or finite state automaton) is a mathematical model of computation.

A FSM can only be in a single state at any given time.

Transitions between states are governed by external inputs, when some condition is met.

A FSM is fully defined by:

The state set .

Its initial state .

A list of conditions for each transition.

Usually implemented by a series of if/then/else
statements:

s

Source:
https://web.stanford.edu/class/archive/cs/cs103/cs103.1142/button-fsm/

S = {s ​} ​i i=1
N

S ​0

if state == "hover" and press == true:

 state = "pressed"

elif ...

4
/
48

https://web.stanford.edu/class/archive/cs/cs103/cs103.1142/button-fsm/

Markov Chain (MC)
A first-order Markov chain (or Markov process) is a
stochastic process generated by a FSM, where
transitions between states are governed by state
transition probabilities.

A Markov chain is defined by:

The state set .

The state transition probability function:

When the states have the Markov property, the
state transition probabilities fully describe the MC.

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

S = {s ​} ​i i=1
N

​ ​

P : S →

p(s ∣s)′

P (S)

= P (s ​ = s ∣s ​ = s)t+1
′

t

5
/
48

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Markov property
The Markov property states that:

Formally, the state (state at time) is Markov (or Markovian) if and only if:

The knowledge of the current state is enough to predict in which state the system will be at the
next time step.

We do not need the whole history of the system to predict what will happen.

Note: if we need and to predict , we have a second-order Markov chain.

The future is independent of the past given the present.

s ​t t

P (s ​∣s ​) =t+1 t P (s ​∣s ​, s ​, … , s ​)t+1 t t−1 0

s ​t s ​t+1

{s ​, s ​, … , s ​}0 1 t

s ​t−1 s ​t s ​t+1

6
/
48

Markov property
For example, the probability 0.8 of transitioning
from “Class 2” to “Class 3” is the same regardless
we were in “Class 1” or “Pub” before.

If this is not the case, the states are not Markov,
and this is not a Markov chain.

We would need to create two distinct states:

“Class 2 coming from Class 1”

“Class 2 coming from the pub”

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

7
/
48

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

State transition matrix
Supposing that the states have the Markov property, the
transitions in the system can be summarized by the state
transition matrix :

Each element of the state transition matrix corresponds to . Each row of the state transition
matrix sums to 1:

The tuple fully describes the Markov chain.

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

P

p(s ∣s)′

​ p(s ∣s) =
s′

∑ ′ 1

< S, P >

8
/
48

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Markov Reward Process (MRP)
A Markov Reward Process is a Markov Chain where each transition is associated with a scalar reward ,
coming from some probability distribution.

A Markov Reward Process is defined by the tuple .

1. The finite state set .

2. The state transition probability function:

3. The expected reward function:

4. The discount factor .

r

< S, P, R, γ >

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

S

P : S →

p(s ∣s)′

P (S)

= P (s ​ = s ∣s ​ = s)t+1
′

t

R : S × S →
r(s, s)′

ℜ
= E(r ​∣s ​ = s, s ​ = s)t+1 t t+1

′

γ ∈ [0, 1]

9
/
48

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Expected reward
As with n-armed bandits, we only care about the expected reward received during a transition (on
average), but the actual reward received may vary around the expected value.

s → s′

r ​t+1

r(s, s) =′ E(r ​∣s ​ =t+1 t s, s ​ =t+1 s)′

10
/
48

Return
The main difference with n-armed bandits is that the MRP will be in a sequence of states (possibly
infinite):

and collect a sequence of reward samples:

In a MRP, we are interested in estimating the return , i.e. the discounted sum of future rewards after
the step :

Meaning: how much reward will I collect from now on?

Of course, you never know the return at time : transitions and rewards are probabilistic, so the received
rewards in the future are not exactly predictable at .

 is therefore purely theoretical: RL is all about estimating the return.

s ​ →0 s ​ →1 s ​ →2 … → s ​T

r ​ →1 r ​ →2 r ​ →3 … → r ​T

R ​t

t

R ​ =t r ​ +t+1 γ r ​ +t+2 γ r ​ +2
t+3 … = ​γ r ​

k=0

∑
∞

k
t+k+1

t

t

R ​t

11
/
48

Discount factor

The discount factor (or discount rate, or discount) is a very important parameter in RL:

It defines the present value of future rewards.

Receiving 10 euros now has a higher value than receiving 10 euros in ten years, although the reward
is the same: you do not have to wait.

The value of receiving a reward after time steps is .

Immediate rewards are better than delayed rewards.

When , tends to 0 when goes to infinity: this makes sure that the return is always finite.

Particularly important when the MRP is cyclic / periodic.

If all sequences terminate at some time step , we can set .

R ​ =t r ​ +t+1 γ r ​ +t+2 γ r ​ +2
t+3 … = ​γ r ​

k=0

∑
∞

k
t+k+1

γ ∈ [0, 1]

r k + 1 γ rk

γ < 1 γk k

T γ = 1

12
/
48

Markov Decision Process (MDP)
A Markov Decision Process is a MRP where transitions are influenced by actions .

A finite MDP is defined by the tuple :

1. The finite state set .

2. The finite action set .

3. The state transition probability function:

4. The expected reward function:

5. The discount factor .

a ∈ A

< S, A, P, R, γ >

S

A

​ ​

P : S × A →

p(s ∣s, a)′

P (S)

= P (s ​ = s ∣s ​ = s, a ​ = a)t+1
′

t t

​ ​

R : S × A × S →

r(s, a, s)′
ℜ

= E(r ​∣s ​ = s, a ​ = a, s ​ = s)t+1 t t t+1
′

γ ∈ [0, 1]

13
/
48

Markov Decision Process (MDP)

Source: David Silver. http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

14
/
48

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Transition and reward probabilities
Why do we need transition probabilities in RL?

Some RL tasks are deterministic: an action in a state always leads to the state :

Board games, video games…

Others are stochastic: the same action can lead to different states :

Casino games (throwing a dice, etc)

Two-opponent games (the next state depends on what the other player chooses).

Uncertainty (shoot at basketball, slippery wheels, robotic grasping).

For a transition , the received reward can be also stochastic:

Casino games (armed bandit), incomplete information, etc.

Most of the problems we will see in this course have deterministic rewards, but we only care about
expectations anyway.

p(s ∣s, a) =′ P (s ​ =t+1 s ∣s ​ =′
t s, a ​ =t a)

a s s′

a s′

(s, a, s)′

r(s, a, s) =′ E(r ​∣s ​ =t+1 t s, a ​ =t a, s ​ =t+1 s)′

15
/
48

The Markov property for a MDP
The state of the agent at step refers to whatever information is available about its environment or its
own “body”.

The state can include immediate “sensations”, highly processed sensations, and structures built up over
time from sequences of sensations.

A state should summarize all past sensations so as to retain all essential information, i.e. it should have
the Markov Property:

This means that the current state representation contains enough information to predict the probability
of arriving in the next state given the chosen action .

When the Markovian property is not met, we have a Partially-Observable Markov Decision Process
(POMDP).

t

​ ​

P (s ​ = s, r ​ = rt+1 t+1 ∣s ​, a ​, r ​, s ​, a ​, ..., s ​, a ​) = P (s ​ = s, r ​ = r∣s ​, a ​)t t t t−1 t−1 0 0 t+1 t+1 t t

for all s, r, and past histories (s ​, a ​, ..., s ​, a ​)t t 0 0

s

s′ a

16
/
48

Markov property
Where is the ball going? To the little girl or to the
player?

Single video frames are not Markov states: you
cannot generally predict what will happen based on
a single image.

A simple solution is to stack or concatenate
multiple frames:

By measuring the displacement of the ball
between two consecutive frames, we can
predict where it is going.

One can also learn state representations containing the history using recurrent neural networks (see
later).

Source: https://medium.com/emergent-future/simple-reinforcement-
learning-with-tensorflow-part-6-partial-observability-and-deep-recurrent-q-
68463e9aeefc

17
/
48

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-6-partial-observability-and-deep-recurrent-q-68463e9aeefc

POMDP : Partially-Observable Markov Decision Process
In a POMDP, the agent does not have access to the
true state of the environment, but only
observations .

Observations are partial views of the state, without
the Markov property.

The dynamics of the environment (transition
probabilities, reward expectations) only depend on
the state, not the observations.

The agent can only make decisions (actions) based
on the sequence of observations, as it does not
have access to the state directly (Plato’s cavern).

In a POMDP, the state of the agent is implicitly the concatenation of the past observations and actions:

Under conditions, this inferred state can have the Markov property and the POMDP is solvable.

Source: https://artint.info/html/ArtInt_230.html

s ​t

o ​t

s ​t

s ​ =t (o ​, a ​, o ​, a ​, … , a ​, o ​)0 0 1 1 t−1 t

18
/
48

https://artint.info/html/ArtInt_230.html

Return
Suppose the sequence of rewards obtained after step (after being in
state and choosing action) is:

What we want to maximize is the return (reward-to-go) at each time step
, i.e. the sum of all future rewards:

More generally, for a trajectory (episode) , one can define its return as:

t

s ​t a ​t

r ​, r ​, r ​, ...t+1 t+2 t+3

t

R ​ =t r ​ +t+1 γ r ​ +t+2 γ r ​ +2
t+3 ... = ​γ r ​

k=0

∑
∞

k
t+k+1

τ = (s ​, a ​, r ​, s ​, a ​, … , s ​)0 0 1 1 1 T

R(τ) = ​γ r ​

t=0

∑
T

t
t+1

19
/
48

Return

For episodic tasks (which break naturally into finite episodes of length , e.g. plays of a game, trips
through a maze), the return is always finite and easy to compute at the end of the episode.

The discount factor can be set to 1.

For continuing tasks (which can not be split into episodes), the return could become infinite if .

The discount factor has to be smaller than 1.

The discount rate determines the relative importance of future rewards for the behavior:

if is close to 0, only the immediately available rewards will count: the agent is greedy or myopic.

if is close to 1, even far-distance rewards will be taken into account: the agent is farsighted.

T

R ​ =t ​r ​

k=0

∑
T

t+k+1

γ = 1

R ​ =t ​γ r ​

k=0

∑
∞

k
t+k+1

γ

γ

γ

20
/
48

Why the reward on the long term?

Selecting the action in does not bring reward immediately () but allows to reach in the
future and get a reward of 10.

Selecting in brings immediately a reward of 1, but that will be all.

 is better than , because it will bring more reward on the long term.

r = 1

r = 0

r = 0 r = 0
r = 0

r = 10

r = 0

s1

s2 s3 s4

s6

s5
a1

a2

a ​1 s ​1 r ​ =1 0 s ​5

a ​2 s ​1

a ​1 a ​2

21
/
48

Why the reward on the long term?

When selecting in , the discounted return is:

while it is for the action .

For small values of (e.g. 0.1), becomes smaller than one, so the action leads to a higher
discounted return.

The discount rate changes the behavior of the agent. It is usually taken somewhere between 0.9 and
0.999.

r = 1

r = 0

r = 0 r = 0
r = 0

r = 10

r = 0

s1

s2 s3 s4

s6

s5
a1

a2

a ​1 s ​1

R = 0 + γ 0 + γ 0 +2 γ 10 +3 … = 10 γ3

R = 1 a ​2

γ 10 γ3 a ​2

γ

22
/
48

Example: the cartpole balancing task
State: Position and velocity of the cart, angle and
speed of the pole.

Actions: Commands to the motors for going left or
right.

Reward function: Depends on whether we consider
the task as episodic or continuing.

Episodic task where episode ends upon failure:

reward = +1 for every step before failure, 0 at
failure.

return = number of steps before failure.

Continuing task with discounted return:

reward = -1 at failure, 0 otherwise.

return = for steps before failure.

In both cases, the goal is to maximize the return by maintaining the pole vertical as long as possible.

−γk k

23
/
48

Example: the recycling robot MDP
At each step, the robot has to decide whether it
should:

1. actively search for a can,

2. wait for someone to bring it a can, or

3. go to home base and recharge.

Searching is better (more reward) but runs down
the battery (probability 1- to empty the battery): if
the robot runs out of power while searching, he has
to be rescued (which leads to punishment and
should be avoided).

Decisions must be made on basis of the current
energy level: high, low. This will be the state of the
robot.

Return = number of cans collected.

α

24
/
48

Example: the recycling robot MDP
 = expected number of cans while

searching.

 = expected number of cans while waiting.

S = {high, low}

A(high) = {search,wait}

A(low) = {search,wait, recharge}

Rsearch

Rwait

R >search Rwait

25
/
48

Example: the recycling robot MDP

 = expected number of cans while
searching.

 = expected number of cans while waiting.

The MDP is fully described by the following table:

high high search

high low search

low high search

low low search

high high wait

high low wait

low high wait

low low wait

low high recharge

low low recharge

S = {high, low}

A(high) = {search,wait}

A(low) = {search,wait, recharge}

Rsearch

Rwait

R >search Rwait

s s′ a p(s ∣s, a)′ r(s, a, s)′

α Rsearch

1 − α Rsearch

1 − β −3

β Rsearch

1 Rwait

0 Rwait

0 Rwait

1 Rwait

1 0

0 0

26
/
48

The policy

The probability that an agent selects a particular action in a given state is called the policy .

The policy can be deterministic (one action has a probability of 1, the others 0) or stochastic.

The goal of an agent is to find a policy that maximizes the sum of received rewards on the long term,
i.e. the return at each each time step.

This policy is called the optimal policy .

a s π

π

(s, a)

: S × A → P (S)

→ π(s, a) = P (a ​ = a∣s ​ = s)t t

(1)

(2)

R ​t

π∗

J (π) = E ​[R ​] π =ρ ​π t
∗ argmax J (π)

27
/
48

Goal of Reinforcement Learning
RL is an adaptive optimal control method for Markov Decision Processes using (sparse) rewards as a
partial feedback.

At each time step , the agent observes its Markov state , produces an action ,
receives a reward according to this action and updates its state: .

The agent generates trajectories depending on its policy .

The return of a trajectory is the (discounted) sum of rewards accumulated during the sequence:

The goal is to find the optimal policy that maximizes in expectation the return of each possible
trajectory under that policy:

t s ​ ∈t S a ​ ∈t A(s ​)t
r ​ ∈t+1 ℜ s ​ ∈t+1 S

τ = (s ​, a ​, r ​, s ​, a ​, … , s ​)0 0 1 1 1 T π(s, a)

R(τ) = ​γ r ​

t=0

∑
T

t
t+1

π (s, a)∗

J (π) = E ​[R(τ)] π =τ∼ρ ​π

∗ argmax J (π)

28
/
48

2 - Bellman equations

29
/
48

Value Functions
A central notion in RL is to estimate the value (or utility) of
every state and action of the MDP.

The value of a state is the expected return when
starting from that state and thereafter following the agent’s
current policy .

The state-value function of a state given the policy
 is defined as the mathematical expectation of the return

after that state:

V (s)π

π

V (s)π s

π

V (s) =π E ​(R ​∣s ​ =ρ ​π t t s) = E ​(​γ r ​∣s ​ =ρ ​π

k=0

∑
∞

k
t+k+1 t s)

30
/
48

Value Functions

The mathematical expectation operator is indexed by ,
the probability distribution of states achievable with .

Several trajectories are possible after the state :

The state transition probability function leads
to different states , even if the same actions are taken.

The expected reward function provides
stochastic rewards, even if the transition is the
same.

The policy itself is stochastic.

Only rewards that are obtained using the policy should be
taken into account, not the complete distribution of states and
rewards.

V (s) =π E ​(R ​∣s ​ =ρ ​π t t s) = E ​(​γ r ​∣s ​ =ρ ​π

k=0

∑
∞

k
t+k+1 t s)

E(⋅) ρ ​π

π

s

p(s ∣s, a)′

s′

r(s, a, s)′

(s, a, s)′

π

π

31
/
48

Value Functions
The value of a state is not intrinsic to the state itself, it depends on the policy:

One could be in a state which is very close to the goal (only one action left to win game), but if the policy
is very bad, the “good” action will not be chosen and the state will have a small value.

Source:

V (s) =π E ​(R ​∣s ​ =ρ ​π t t s) = E ​(γ r ​∣s ​ =ρ ​π

k=0

∑
∞

k
t+k+1 t s)

https://www.carbonated.tv/sports/worst-open-goal-misses-in-football-gifs

32
/
48

https://www.carbonated.tv/sports/worst-open-goal-misses-in-football-gifs

Value Functions
The value of taking an action in a state under policy is
the expected return starting from that state, taking that action,
and thereafter following the following .

The action-value function for a state-action pair under
the policy (or Q-value) is defined as:

State- and action-value functions are linked to each other.

a s π

π

(s, a)
π

​ ​

Q (s, a)π = E ​(R ​∣s ​ = s, a ​ = a)ρ ​π t t t

= E ​(​γ r ​∣s ​ = s, a ​ = a)ρ ​π

k=0

∑
∞

k
t+k+1 t t

(1)

(2)

33
/
48

The V and Q value functions are inter-dependent

The value of a state depends on the value of the action that will be chosen by the policy
 in :

If the policy is deterministic (the same action is chosen every time), the value of the state is the same
as the value of that action (same expected return).

If the policy is stochastic (actions are chosen with different probabilities), the value of the state is the
weighted average of the value of the actions.

If the Q-values are known, the V-values can be found easily.

V (s)π Q (s, a)π

π s

V (s) =π E ​[Q (s, a)] =a∼π(s,a)
π

​π(s, a)Q (s, a)
a∈A(s)

∑ π

π

π

34
/
48

Values and immediate rewards
We can note that the return at time depends on the immediate reward and the return at the next
time step :

When taking the mathematical expectation of that identity, we obtain:

It becomes clear that the value of an action depends on the immediate reward received just after the
action, as well as the value of the next state:

But that is only for a fixed transition.

t r ​t+1

t + 1

Rt = r ​ + γ r ​ + γ r ​ + ⋯ + γ r ​ + …t+1 t+2
2

t+3
k

t+k+1

= r ​ + γ (r ​ + γ r ​ + ⋯ + γ r ​ + …)t+1 t+2 t+3
k−1

t+k+1

= r ​ + γ R ​t+1 t+1

E ​[R ​] =ρ ​π t r(s ​, a ​, s ​) +t t t+1 γ E ​[R ​]ρ ​π t+1

Q (s ​, a ​) =π
t t r(s ​, a ​, s ​) +t t t+1 γ V (s ​)π

t+1

(s ​, a ​, s ​)t t t+1

35
/
48

The V and Q value functions are inter-dependent

Taking transition probabilities into account, one can obtain the Q-values when the V-values are known:

The value of an action depends on:

the states one can arrive after the action (with a probability).

the value of that state , weighted by as it is one step in the future.

the reward received immediately after taking that action (as it is not included in the value
of).

Q (s, a) =π E ​[r(s, a, s) +s ∼p(s ∣s,a)′ ′
′ γ V (s)] =π ′

​p(s ∣s, a) [r(s, a, s) +
s ∈S′

∑ ′ ′ γ V (s)]π ′

s′ p(s ∣s, a)′

V (s)π ′ γ

r(s, a, s)′

s′

36
/
48

Bellman equation for

A fundamental property of value functions used throughout reinforcement learning is that they satisfy a
particular recursive relationship:

This equation is called the Bellman equation for .

It expresses the relationship between the value of a state and the value of its successors, depending on
the dynamics of the MDP (and) and the current policy .

The interesting property of the Bellman equation for RL is that it admits one and only one solution .

V π

V (s)π = ​π(s, a)Q (s, a)
a∈A(s)

∑ π

= ​π(s, a) p(s ∣s, a) [r(s, a, s) + γ V (s)]
a∈A(s)

∑
s ∈S′

∑ ′ ′ π ′

V π

p(s ∣s, a)′ r(s, a, s)′ π

V (s)π

37
/
48

Bellman equation for

The same recursive relationship stands for :

which is called the Bellman equation for .

The following backup diagrams denote these recursive relationships.

Qπ

Q (s, a)π

​ ​

Q (s, a)π = ​p(s ∣s, a) [r(s, a, s) + γ V (s)]
s ∈S′

∑ ′ ′ π ′

= ​p(s ∣s, a) [r(s, a, s) + γ ​π(s , a)Q (s , a)]
s ∈S′

∑ ′ ′

a ∈A(s)′ ′

∑ ′ ′ π ′ ′

Qπ

38
/
48

3 - Bellman optimality equations

39
/
48

Optimal policy
The optimal policy is the policy that gathers the maximum of reward on the long term.

Value functions define a partial ordering over policies:

A policy is better than another policy if its expected return is greater or equal than that of for all states .

For a MDP, there exists at least one policy that is better than all the others: this is the optimal policy .

We note and the optimal value of the different states and actions under .

Partial ordering

π π′ π′ s

π ≥ π ⇔′ V (s) ≥π V (s) ∀s ∈π′
S

π∗

V (s)∗ Q (s, a)∗ π∗

V (s) =∗
​V (s) ∀s ∈

π
max π S

Q (s, a) =∗
​Q (s, a) ∀s ∈

π
max π S, ∀a ∈ A

40
/
48

The optimal policy is greedy
When the policy is optimal , the link between the V and Q
values is even easier.

The V and Q values are maximal for the optimal policy: there is
no better alternative.

The optimal action to perform in the state is the one with the highest optimal Q-value .

By definition, this action will bring the maximal return when starting in .

The optimal policy is greedy with respect to , i.e. deterministic.

π∗

a∗ s Q (s, a)∗

a =∗ argmax ​ Q (s, a)a
∗

s

Q (s, a) =∗ E ​[R ​]ρ ​π∗ t

Q (s, a)∗

π (s, a) =∗
​{1 if a = a∗

0 otherwise.

41
/
48

Bellman optimality equations
As the optimal policy is deterministic, the optimal value of a
state is equal to the value of the optimal action:

The expected return after being in is the same as the expected return after being in and choosing the
optimal action , as this is the only action that can be taken.

This allows to find the Bellman optimality equation for :

The same Bellman optimality equation stands for :

The optimal value of depends on the optimal action in the next state .

V (s) =∗
​Q (s, a)

a∈A(s)
max π∗

s s

a∗

V ∗

V (s) =∗
​ ​p(s ∣s, a) [r(s, a, s) +

a∈A(s)
max

s ∈S′

∑ ′ ′ γ V (s)]∗ ′

Q∗

Q (s, a) =∗
​p(s ∣s, a) [r(s, a, s) +

s ∈S′

∑ ′ ′ γ ​Q (s , a)]
a ∈A(s)′ ′
max ∗ ′ ′

(s, a) s′

42
/
48

Bellman optimality equations
The Bellman optimality equations for form a system of equations:

If there are states , there are Bellman equations with unknowns .

If the dynamics of the environment are known (and), then in principle one can solve
this system of equations using linear algebra.

For finite MDPs, the Bellman optimality equation for has a unique solution (one and only one).

This is the principle of dynamic programming.

The same is true for the Bellman optimality equation for :

If there are states and actions available, there are equations with unknowns
.

V ∗

N s N N V (s)∗

V (s) =∗
​ ​p(s ∣s, a) [r(s, a, s) +

a∈A(s)
max

s ∈S′

∑ ′ ′ γ V (s)]∗ ′

p(s ∣s, a)′ r(s, a, s)′

V ∗

Q∗

N M N × M N × M

Q (s, a)∗

Q (s, a) =∗
​p(s ∣s, a) [r(s, a, s) +

s ∈S′

∑ ′ ′ γ ​Q (s , a)]
a ∈A(s)′ ′
max ∗ ′ ′

43
/
48

Obtaining the optimal policy from the optimal values
 and are interdependent: one needs only to compute one of them.

If you only have , you need to perform a one-step-ahead search using the dynamics of the MDP:

and then select the optimal action with the highest -value.

Using the values is called model-based: you need to know the model of the environment to act, at
least locally.

V ∗ Q∗

V (s) =∗
​ Q (s, a)

a∈A(s)
max ∗

Q (s, a) =∗
​ p(s ∣s, a) [r(s, a, s) +

s ∈S′

∑ ′ ′ γV (s)]∗ ′

V (s)∗

Q (s, a) =∗
​ p(s ∣s, a) [r(s, a, s) +

s ∈S′

∑ ′ ′ γV (s)]∗ ′

Q∗

V (s)∗

44
/
48

Bellman optimality equations for or ?

If you have all , the optimal policy is straightforward:

Finding makes the selection of optimal actions easy:

no need to iterate over all actions and to know the dynamics and .

for any state , it can simply find the action that maximizes .

The action-value function effectively caches the results of all one-step-ahead searches into a single value:
model-free.

At the cost of representing a function of all state-action pairs, the optimal action-value function allows
optimal actions to be selected without having to know anything about the environment’s dynamics.

But there are equations to solve instead of just …

V ∗ Q∗

Q (s, a)∗

π (s, a) =∗
​{1 if a = argmax ​ Q (s, a)a

∗

0 otherwise.

Q∗

p(s ∣s, a)′ r(s, a, s)′

s Q (s, a)∗

N × M N

45
/
48

How to solve the Bellman equations?
Finding an optimal policy by solving the Bellman optimality equations requires the following:

accurate knowledge of environment dynamics and for all transitions;

enough memory and time to do the computations;

the Markov property.

How much space and time do we need? A solution requires an exhaustive search, looking ahead at all
possibilities, computing their probabilities of occurrence and their desirability in terms of expected
rewards.

The number of states is often huge or astronomical (e.g., Go has about states).

Dynamic programming solves exactly the Bellman equations.

Monte-Carlo and temporal-difference methods approximate them.

p(s ∣s, a)′ r(s, a, s)′

10170

46
/
48

Key idea of Reinforcement learning: Generalized Policy Iteration
RL algorithms iterate over two steps:

1. Policy evaluation

For a given policy , the value of all states or
all state-action pairs is calculated, either
based on:

the Bellman equations (Dynamic Programming)

sampled experience (Monte-Carlo and Temporal
Difference)

2. Policy improvement

From the current estimated values or
, a new better policy is derived.

After enough iterations, the policy converges to the optimal
policy (if the states are Markov).

π V (s)π

Q (s, a)π

V (s)π

Q (s, a)π π

47
/
48

Different notations in RL
Notations can vary depending on the source.

The ones used in this course use what you can read in most modern deep RL papers (Deepmind, OpenAI),
but beware that you can encounter for the return…

This course Sutton and Barto
1998

Sutton and Barto 2017

Current state

Selected action

Sampled reward

Transition probability

Expected reward

Return

State value function

Action value function

G ​t

s ​t s ​t S ​t

a ​t a ​t A ​t

r ​t+1 r ​t+1 R ​t+1

p(s ∣s, a)′ P ​ss′
a p(s ∣s, a)′

r(s, a, s)′ R ​ss′
a r(s, a, s)′

R ​t R ​t G ​t

V (s)π V (s)π v ​(s)π

Q (s, a)π Q (s, a)π q ​(s, a)π

48
/
48

