REEHS

UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE

CHEMNITZ

Deep Reinforcement Learning

Dynamic Programming

Julien Vitay

Professur fur Kunstliche Intelligenz - Fakultat fir Informatik

1/24

Dynamic Programming (DP)

evaluation e Dynamic Programming (DP) iterates over two steps:
m 1. Policy evaluation
I V = For a given policy 7, the value of all states V™ (s) or all state-
T—greedy(V) action pairs Q™ (s, a) is calculated based on the Bellman
. equations:
Improvement
- / / /
Vi(s)=) w(s,a) Y p(s']s,a)[r(s,a,8") +y V()]
) acA(s) s'eS
. 2. Policy improvement
[V> = From the current estimated values V™ (s) or Q™ (s, a), a new
B E—

better policy 7 is derived.

7' < Greedy(V™)

o After enough iterations, the policy converges to the optimal policy (if the states are Markov).

e Two main algorithms: policy iteration and value iteration.

2/24

1 - Policy iteration

Policy evaluation

e Bellman equation for the state s and a fixed policy 7:

Vi(s) =) m(s,a) Y p(s'|s,a) [r(s,a,s") + 4 V()]

acA(s) s'eS

e Let's note ’P;TS, the transition probability between s and s’ (dependent on the policy 7) and RT the
expected reward in s (also dependent):

58! = Z W(s,a)p(s'\s,a)

acA(s)

RT= 3" 7(s,a) Y pls']s,a) r(s,0,)

acA(s) s'eS
e The Bellman equation becomes V7 (s) = RT + v Z PILVT(s)

s'eS

e As we have a fixed policy during the evaluation (MRP), the Bellman equation is simplified.

4/24

Policy evaluation

e Let's now put the Bellman equations in a matrix-vector form.

e We first define the vector of state values V™

'V'7T

V7™ (s1)
V7™ (s2)

‘/W&Sn)

e The state transition matrix P” is defined as:

7)7'('

T
Pslsl
T
Pstl

Pﬂ'

" SnS1

s'eS

e and the vector of expected reward R":

T
PSl §2
T
PSz S9

Pﬂ'

Sn S2

VT(s) =Rl +v » P V(s

RT('

T
Psl Sn
T
PSQ Sn

Pﬂ'

SnSn -

R™(s1)
R™(s2)

73W&Sn)

5/24

Policy evaluation

e You can simply check that:

V7 (s1)
V7 (s2)

lf”&sn)

R™(s1)
R™(s2)

72”isn)

leads to the same equations as:

for all states s.

e The Bellman equations for all states s can therefore be written with a matrix-vector notation as:

+7

7
7)8181
7
7)8281

T
_Psn S1

s
PSl S92
s
P8282

T
7Dsn S92

T
T

s
Psn Sn

V() =R +7v » PLV"(s)

'V'7T — RT(’_I_,YPT('VTF

s'eS

V7™(s1)
V7 (s2)

‘f”&sn)

6/24

Policy evaluation

 The Bellman equations for all states s is:
'V'T(' — R7T _I_ ,YPT(' 'V'7T
o If we know P™ and R™ (dynamics of the MDP for the policy), we can simply obtain the state values:

(I—~yP")x V" =R"
where I is the identity matrix, what gives:
Vi =(I—-yP") ' xR"

e Donel
e But, if we have n states, the matrix P™ has n? elements.

2.37)

e Inverting I — v P7 requires at least (’)(n operations.

e Forget it if you have more than a thousand states (1000%3” ~~ 13 million operations).

e In dynamic programming, we will use iterative methods to estimate V".

7124

Iterative policy evaluation

e The idea of iterative policy evaluation (IPE) is to consider a sequence of consecutive state-value

functions which should converge from initially wrong estimates V{(s) towards the real state-value
function V™ (s).

Vo—-Vi—-—Vo—> ... Ve—- Vi1 — ... V"

o The value function atstep k + 1 Vi, 1(s) is

computed using the previous estimates Vj,(s) and

the Bellman equation transformed into an update
rule.

e |n vector notation:

Vk+1 = R" -+ ")’PW Vk

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

8/24

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Iterative policy evaluation

Let’s start with dummy (e.g. random) initial estimates Vo(s) for the value of every state s.

We can obtain new estimates V; (s) which are slightly less wrong by applying once the Bellman operator:

) Z (s,a) D p(s']s,a) [r(s,a,8') +yVo(s')] Vs €S
acA(s s'eS

Based on these estimates V7 (s), we can obtain even better estimates V5(s) by applying again the
Bellman operator:

) Z (s,a) Zp(s’\s,a) r(s,a,8)+vVi(s')] VseS
acA(s s'eS

Generally, state-value function estimates are improved iteratively through:

Vir1(8) < Z (s,a) Zp(s'\s,a) r(s,a,8') +vVi(s')] VseS
acA(s s'eS

Vo = V'™ is afixed point of this update rule because of the uniqueness of the solution to the Bellman
equation.

9/24

Bellman operator

« The Bellman operator 7™ is a mapping between two vector spaces:
T"(V)=R"+yP"V

o If you apply repeatedly the Bellman operator on any initial vector V, it converges towards the solution of
the Bellman equations V™.

« Mathematically speaking, 7™ is a «y-contraction, i.e. it makes value functions closer by at least ~:

[T (V) =T"(U)]lc <7V = Ul

e The contraction mapping theorem ensures that 7" converges to an unique fixed point:

= Existence and uniqueness of the solution of the Bellman equations.

10/24

Backup diagram of IPE

e [terative Policy Evaluation relies on full backups: it backs up the value of ALL possible successive states
into the new value of a state.

Vir1(8) < Z (s, a) Zp(s'\s,a) r(s,a,8') +vVi(s')] VseS
acA(s) s'eS

e Backup diagram: which other values do you need to know in order to update one value?

S

A
|"-.H|
L ’\\1"—.
> .
_,.-"/ \
v (
s \p
'l \ Il \ M\
I\ I\ " \
[A [[
] | [} \
| \ | ! f
f \ f \ |
L | p -
CY (Y Y (OO (O

{

% 1
) 5

- g
._‘J. L '|_,f' L L

O

 The backups are synchronous: all states are backed up in parallel.

Vira =R +9P" Vi

e The termination of iterative policy evaluation has to be controlled by hand, as the convergence of the
algorithm is only at the limit.

e |tis good practice to look at the variations on the values of the different states, and stop the iteration
when this variation falls below a predefined threshold.

11/24

Iterative policy evaluation

e For a fixed policy m, initialize V(s) = 0 Vs € S.

e while not converged:

= for all states s:
> Viarget (8) = L) 7(5,0) s P(8']s5,0) [r(s,0,8) + 7 V(s')
= 0 =0
= for all states s:
o 0 = max (0, |V (s) — Viarget(s)|)
o V(s) = Vtarget(s)
= if 0 < Othreshold:

o converged = True

12/24

Dynamic Programming (DP)

evaluation

m
|0 V

T—greedy(V)

Improvement

e Dynamic Programming (DP) iterates over two steps:

1. Policy evaluation

= For a given policy 7, the value of all states V" (s) or all state-
action pairs Q™ (s, a) is calculated based on the Bellman

equations:
Vi(s) = > w(s,a) > p(s']s,a)[r(s,a,8") +y V()]
acA(s) s'eS

2. Policy improvement

= From the current estimated values V" (s) or Q™ (s, a), a new
better policy 7 is derived.

13/24

Policy improvement

o For each state s, we would like to know if we should deterministically choose an action a # 7(s) or not
in order to improve the policy.

e The value of an action a in the state s for the policy 7 is given by: | PN
./f \\’u
/ / / n
= > _p(s'|s,a) [r(s,a,8') +yV7(s)
$'ES OO0 OO O Os

e |f the Q-value of an action a is higher than the one currently selected by the deterministic policy:

Q" (s,a) > Q"(s,m(s)) = V" (s)
then it is better to select a once in s and thereafter follow 7.

e If there is no better action, we keep the previous policy for this state.

e This corresponds to a greedy action selection over the Q-values, defining a deterministic policy 7'('(8)2

7(s) <+ argmax, Q" (s,a) = Zp 'Is,a)[r(s,a,s8") +yV7(s)]
s'eS

14 /24

Policy improvement

o After the policy improvement, the Q-value of each deterministic action 7(s) has increased or stayed the
same.

argmax_Q" (s, a) Zp "|s,a)[r(s,a,s8) +yV™(s')] > Q" (s, n(s))
s'eS

 This defines an improved policy 7/, where all states and actions have a higher value than previously.

o Greedy action selection over the state value function implements policy improvement:

7' < Greedy(V"™)

Greedy policy improvement:

e foreachstates € S:

v 7(s) < argmax, > . .sP(s'|s,a)[r(s,a,s") +vV7(s)]

15/24

Policy iteration

evaluation e Once a policy 7 has been improved using V'™ to yield a better
m policy 7/, we can then compute V™ and improve it again to
T % yield an even better policy 7"

e The algorithm policy iteration successively uses policy

n—greedy(V)) o . .
evaluation and policy improvement to find the optimal policy.

improvement
. E I E 1T I E
) mw— V" —mn—V" —.. —a —V
»
»

i 1 7
n - V starting Ve

V

e The optimal policy being deterministic, policy improvement can be greedy over the state values.

e |f the policy does not change after policy improvement, the optimal policy has been found.

16/24

Policy iteration

e Initialize a deterministic policy 7(s) andset V(s) = 0Vs € S.
e while 7 is not optimal:
= while not converged: # Policy evaluation
o for all states s:
o Viarget (5) = Dgea(s) T(8:0) Doges P(8']s,a) [r(s,a,") + vV (s')]
o for all states s:
o V(s) = Viarget (s)
» for each state s € S: # Policy improvement
o (8) < argmax,) . s P(5'|s,a)|r(s,a,s") +yV7(s')]

= if ™ has not changed: break

17124

2 - Value iteration

18 /24

Value iteration

e One drawback of policy iteration is that it uses a full policy evaluation, which can be computationally
exhaustive as the convergence of V}, is only at the limit and the number of states can be huge.

e The idea of value iteration is to interleave policy evaluation and policy improvement, so that the policy is
improved after EACH iteration of policy evaluation, not after complete convergence.

e As policy improvement returns a deterministic greedy policy, updating of the value of a state is then
simpler:

Vk+1(8) — mc?,XZp(s"s, a) [’P(S, a, Sl) T VVk(SI)]

e Note that this is equivalent to turning the Bellman optimality equation into an update rule.

e Value iteration converges to V'*, faster than policy iteration, and should be stopped when the values do
not change much anymore.

19/24

Value iteration

e Initialize a deterministic policy 7w(s) andset V(s) = 0Vs € S.

e while not converged:
= for all states s:
o Viarger (8) = maxa Yy p(s']s, a) [r(s, a,8') + 7 V(s))
= 0=20
= for all states s:
o 0 = max (0, |V (s) — Viarget(s)|)

© V(S) — Warget(s)
= if 0 < Othreshold:

o converged = True

20/24

Comparison of Policy- and Value-iteration

Full policy-evaluation backup

Vir1(8) Z (s, a) Zp(s'\s,a) r(s,a,8") + v Vi(s)]
)

acA(s s'eS

Full value-iteration backup

cA
. (8) s'eS
N
fi"
MaXx
'

21/24

Asynchronous dynamic programming

o Synchronous DP requires exhaustive sweeps of the entire state set (synchronous backups).

= while not converged:
o for all states s:
o Viarget(s) = max, Y .5 p(s']s,a)|r(s,a,s") +vyV(s)]
o for all states s:
© V(S) — V:carget(s)
o Asynchronous DP updates instead each state independently and asynchronously (in-place):

= while not converged:

o Pick a state s randomly (or following a heuristic).

o Update the value of this state.

V(s) =max) p(s'|s,a)[r(s,a,s') + 7 V(s

s'eS

e We must still ensure that all states are visited, but their frequency and order is irrelevant.

22124

Efficiency of Dynamic Programming

evaluation e Policy-iteration and value-iteration consist of alternations
m between policy evaluation and policy improvement, although
at different frequencies.

n V e This principle is called Generalized Policy Iteration (GPI).
n—greedy(V) Finding an optimal policy is polynomial in the number of
improvement states and actions: O(n?* m) (n is the number of states, m

. the number of actions).
. However, the number of states is often astronomical, e.g.,
. often growing exponentially with the number of state variables
. (what Bellman called “the curse of dimensionality”).
TE:{: —eeee Vﬁk e In practice, classical DP can only be applied to problems with
- a few millions of states.

23 /24

Curse of dimensionality

1

=1 P

oL bt 2 I 1

=

Y =

Ij Z
—_—
X

Source: https://medium.com/diogo-menezes-borges/give-me-the-antidote-for-the-curse-of-dimensionality-b14bce4bf4d2

e |f one variable can be represented by 5 discrete values:

= 2 variables necessitate 25 states,
= 3 variables need 125 states, and so on...

e The number of states explodes exponentially with the number of dimensions of the problem.

24 124

https://medium.com/diogo-menezes-borges/give-me-the-antidote-for-the-curse-of-dimensionality-b14bce4bf4d2

