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Dynamic Programming (DP)
Dynamic Programming (DP) iterates over two steps:

1. Policy evaluation

For a given policy , the value of all states  or all state-
action pairs  is calculated based on the Bellman
equations:

2. Policy improvement

From the current estimated values  or , a new
better policy  is derived.

After enough iterations, the policy converges to the optimal policy (if the states are Markov).

Two main algorithms: policy iteration and value iteration.
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1 - Policy iteration
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Policy evaluation
Bellman equation for the state  and a fixed policy :

Let’s note  the transition probability between  and  (dependent on the policy ) and  the
expected reward in  (also dependent):

The Bellman equation becomes 

As we have a fixed policy during the evaluation (MRP), the Bellman equation is simplified.
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Policy evaluation
Let’s now put the Bellman equations in a matrix-vector form.

We first define the vector of state values : and the vector of expected reward :

The state transition matrix  is defined as:
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Policy evaluation
You can simply check that:

leads to the same equations as:

for all states .

The Bellman equations for all states  can therefore be written with a matrix-vector notation as:
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Policy evaluation
The Bellman equations for all states  is:

If we know  and  (dynamics of the MDP for the policy ), we can simply obtain the state values:

where  is the identity matrix, what gives:

Done!

But, if we have  states, the matrix  has  elements.

Inverting  requires at least  operations.

Forget it if you have more than a thousand states (  million operations).

In dynamic programming, we will use iterative methods to estimate .
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Iterative policy evaluation
The idea of iterative policy evaluation (IPE) is to consider a sequence of consecutive state-value
functions which should converge from initially wrong estimates  towards the real state-value
function .

The value function at step   is
computed using the previous estimates  and
the Bellman equation transformed into an update
rule.

In vector notation:
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Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
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Iterative policy evaluation
Let’s start with dummy (e.g. random) initial estimates  for the value of every state .

We can obtain new estimates  which are slightly less wrong by applying once the Bellman operator:

Based on these estimates , we can obtain even better estimates  by applying again the
Bellman operator:

Generally, state-value function estimates are improved iteratively through:

 is a fixed point of this update rule because of the uniqueness of the solution to the Bellman
equation.
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Bellman operator
The Bellman operator  is a mapping between two vector spaces:

If you apply repeatedly the Bellman operator on any initial vector , it converges towards the solution of
the Bellman equations .

Mathematically speaking,  is a -contraction, i.e. it makes value functions closer by at least :

The contraction mapping theorem ensures that  converges to an unique fixed point:

Existence and uniqueness of the solution of the Bellman equations.
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Backup diagram of IPE
Iterative Policy Evaluation relies on full backups: it backs up the value of ALL possible successive states
into the new value of a state.

Backup diagram: which other values do you need to know in order to update one value?

The backups are synchronous: all states are backed up in parallel.

The termination of iterative policy evaluation has to be controlled by hand, as the convergence of the
algorithm is only at the limit.

It is good practice to look at the variations on the values of the different states, and stop the iteration
when this variation falls below a predefined threshold.
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Iterative policy evaluation
For a fixed policy , initialize .

while not converged:

for all states :

for all states :

if :

converged = True

π V (s) = 0 ∀s ∈ S

s

V ​(s) =target ​ π(s, a) ​ p(s ∣s, a) [r(s, a, s ) +∑a∈A(s) ∑s ∈S′
′ ′ γ V (s )]′

δ = 0

s

δ = max(δ, ∣V (s) − V ​(s)∣)target

V (s) = V ​(s)target

δ < δ ​threshold
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Dynamic Programming (DP)
Dynamic Programming (DP) iterates over two steps:

1. Policy evaluation

For a given policy , the value of all states  or all state-
action pairs  is calculated based on the Bellman
equations:

2. Policy improvement

From the current estimated values  or , a new
better policy  is derived.
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Policy improvement
For each state , we would like to know if we should deterministically choose an action  or not
in order to improve the policy.

The value of an action  in the state  for the policy  is given by:

If the Q-value of an action  is higher than the one currently selected by the deterministic policy:

then it is better to select  once in  and thereafter follow .

If there is no better action, we keep the previous policy for this state.

This corresponds to a greedy action selection over the Q-values, defining a deterministic policy :

s a = π(s)

a s π

Q (s, a) =π
​p(s ∣s, a) [r(s, a, s ) +

s ∈S′

∑ ′ ′ γ V (s )]π ′

a

Q (s, a) >π Q (s,π(s)) =π V (s)π

a s π

π(s)

π(s) ← argmax ​ Q (s, a) =a
π

​p(s ∣s, a) [r(s, a, s ) +
s ∈S′

∑ ′ ′ γ V (s )]π ′

14
/
24



Policy improvement
After the policy improvement, the Q-value of each deterministic action  has increased or stayed the
same.

This defines an improved policy , where all states and actions have a higher value than previously.

Greedy action selection over the state value function implements policy improvement:

for each state :
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π′

π ←′ Greedy(V )π

Greedy policy improvement:

s ∈ S

π(s) ← argmax ​ ​ p(s ∣s, a) [r(s, a, s ) +a ∑s ∈S′
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Policy iteration
Once a policy  has been improved using  to yield a better
policy , we can then compute  and improve it again to
yield an even better policy .

The algorithm policy iteration successively uses policy
evaluation and policy improvement to find the optimal policy.

The optimal policy being deterministic, policy improvement can be greedy over the state values.

If the policy does not change after policy improvement, the optimal policy has been found.
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Policy iteration
Initialize a deterministic policy  and set .

while  is not optimal:

while not converged: # Policy evaluation

for all states :

for all states :

for each state : # Policy improvement

if  has not changed: break

π(s) V (s) = 0 ∀s ∈ S

π
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′ ′ γ V (s )]′
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′ ′ γ V (s )]π ′

π
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2 - Value iteration
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Value iteration
One drawback of policy iteration is that it uses a full policy evaluation, which can be computationally
exhaustive as the convergence of  is only at the limit and the number of states can be huge.

The idea of value iteration is to interleave policy evaluation and policy improvement, so that the policy is
improved after EACH iteration of policy evaluation, not after complete convergence.

As policy improvement returns a deterministic greedy policy, updating of the value of a state is then
simpler:

Note that this is equivalent to turning the Bellman optimality equation into an update rule.

Value iteration converges to , faster than policy iteration, and should be stopped when the values do
not change much anymore.

V ​k

V ​(s) =k+1 ​ ​p(s ∣s, a)[r(s, a, s ) +
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Value iteration
Initialize a deterministic policy  and set .

while not converged:

for all states :

for all states :

if :

converged = True

π(s) V (s) = 0 ∀s ∈ S

s

V ​(s) =target max ​ ​ p(s ∣s, a) [r(s, a, s ) +a ∑s ∈S′
′ ′ γ V (s )]′

δ = 0

s

δ = max(δ, ∣V (s) − V ​(s)∣)target

V (s) = V ​(s)target

δ < δ ​threshold
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Comparison of Policy- and Value-iteration
Full policy-evaluation backup

Full value-iteration backup
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′
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a∈A(s)
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Asynchronous dynamic programming
Synchronous DP requires exhaustive sweeps of the entire state set (synchronous backups).

while not converged:

for all states :

for all states :

Asynchronous DP updates instead each state independently and asynchronously (in-place):

while not converged:

Pick a state  randomly (or following a heuristic).

Update the value of this state.

We must still ensure that all states are visited, but their frequency and order is irrelevant.

s
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V (s) = V ​(s)target

s

V (s) = ​ ​p(s ∣s, a) [r(s, a, s ) +
a

max
s ∈S′

∑ ′ ′ γ V (s )]′
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Efficiency of Dynamic Programming
Policy-iteration and value-iteration consist of alternations
between policy evaluation and policy improvement, although
at different frequencies.

This principle is called Generalized Policy Iteration (GPI).

Finding an optimal policy is polynomial in the number of
states and actions:  (  is the number of states, 
the number of actions).

However, the number of states is often astronomical, e.g.,
often growing exponentially with the number of state variables
(what Bellman called “the curse of dimensionality”).

In practice, classical DP can only be applied to problems with
a few millions of states.

O(n m)2 n m
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Curse of dimensionality

Source: 

If one variable can be represented by 5 discrete values:

2 variables necessitate 25 states,

3 variables need 125 states, and so on…

The number of states explodes exponentially with the number of dimensions of the problem.

https://medium.com/diogo-menezes-borges/give-me-the-antidote-for-the-curse-of-dimensionality-b14bce4bf4d2
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