
Deep Reinforcement Learning
Dynamic Programming

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1 / 24

Dynamic Programming (DP)
Dynamic Programming (DP) iterates over two steps:

1. Policy evaluation

For a given policy , the value of all states or all state-
action pairs is calculated based on the Bellman
equations:

2. Policy improvement

From the current estimated values or , a new
better policy is derived.

After enough iterations, the policy converges to the optimal policy (if the states are Markov).

Two main algorithms: policy iteration and value iteration.

π V (s)π

Q (s, a)π

V (s) =π
 π(s, a) p(s ∣s, a) [r(s, a, s) +

a∈A(s)

∑
s ∈S′

∑ ′ ′ γ V (s)]π ′

V (s)π Q (s, a)π

π

π ←′ Greedy(V)π

2 / 24

1 - Policy iteration

3 / 24

Policy evaluation
Bellman equation for the state and a fixed policy :

Let’s note the transition probability between and (dependent on the policy) and the
expected reward in (also dependent):

The Bellman equation becomes

As we have a fixed policy during the evaluation (MRP), the Bellman equation is simplified.

s π

V (s) =π
 π(s, a) p(s ∣s, a) [r(s, a, s) +

a∈A(s)

∑
s ∈S′

∑ ′ ′ γ V (s)]π ′

P ss′
π s s′ π R s

π

s

P =ss′
π

 π(s, a) p(s ∣s, a)
a∈A(s)

∑ ′

R =s
π

 π(s, a) p(s ∣s, a) r(s, a, s)
a∈A(s)

∑
s ∈S′

∑ ′ ′

V (s) =π R +s
π γ P V (s)

s ∈S′

∑ ss′
π π ′

4 / 24

Policy evaluation
Let’s now put the Bellman equations in a matrix-vector form.

We first define the vector of state values : and the vector of expected reward :

The state transition matrix is defined as:

V (s) =π R +s
π γ P V (s)

s ∈S′

∑ ss′
π π ′

Vπ

V =π

⎣
⎡V (s)π

1

V (s)π
2

⋮
V (s)π

n
⎦
⎤

Rπ

R =π

⎣
⎡R (s)π

1

R (s)π
2

⋮
R (s)π

n
⎦
⎤

Pπ

P =π

⎣
⎡P s s 1 1

π

P s s 2 1
π

⋮
P s s n 1

π

P s s 1 2
π

P s s 2 2
π

⋮
P s s n 2

π

…
…

⋮
…

P s s 1 n

π

P s s 2 n

π

⋮
P s s n n

π ⎦
⎤

5 / 24

Policy evaluation
You can simply check that:

leads to the same equations as:

for all states .

The Bellman equations for all states can therefore be written with a matrix-vector notation as:

 =

⎣
⎡V (s)π

1

V (s)π
2

⋮
V (s)π

n
⎦
⎤

 +

⎣
⎡R (s)π

1

R (s)π
2

⋮
R (s)π

n
⎦
⎤

γ ×

⎣
⎡P s s 1 1

π

P s s 2 1
π

⋮
P s s n 1

π

P s s 1 2
π

P s s 2 2
π

⋮
P s s n 2

π

…
…

⋮
…

P s s 1 n

π

P s s 2 n

π

⋮
P s s n n

π ⎦
⎤

⎣
⎡V (s)π

1

V (s)π
2

⋮
V (s)π

n
⎦
⎤

V (s) =π R +s
π γ P V (s)

s ∈S′

∑ ss′
π π ′

s

s

V =π R +π γ P Vπ π

6 / 24

Policy evaluation
The Bellman equations for all states is:

If we know and (dynamics of the MDP for the policy), we can simply obtain the state values:

where is the identity matrix, what gives:

Done!

But, if we have states, the matrix has elements.

Inverting requires at least operations.

Forget it if you have more than a thousand states (million operations).

In dynamic programming, we will use iterative methods to estimate .

s

V =π R +π γ P Vπ π

Pπ Rπ π

(I− γ P) ×π V =π Rπ

I

V =π (I− γ P) ×π −1 Rπ

n Pπ n2

I− γ Pπ O(n)2.37

1000 ≈2.37 13

Vπ

7 / 24

Iterative policy evaluation
The idea of iterative policy evaluation (IPE) is to consider a sequence of consecutive state-value
functions which should converge from initially wrong estimates towards the real state-value
function .

The value function at step is
computed using the previous estimates and
the Bellman equation transformed into an update
rule.

In vector notation:

V (s)0

V (s)π

V →0 V →1 V →2 … → V →k V →k+1 … → V π

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

k + 1 V (s)k+1

V (s)k

V =k+1 R +π γ P V

π
k

8 / 24

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Iterative policy evaluation
Let’s start with dummy (e.g. random) initial estimates for the value of every state .

We can obtain new estimates which are slightly less wrong by applying once the Bellman operator:

Based on these estimates , we can obtain even better estimates by applying again the
Bellman operator:

Generally, state-value function estimates are improved iteratively through:

 is a fixed point of this update rule because of the uniqueness of the solution to the Bellman
equation.

V (s)0 s

V (s)1

V (s) ←1 π(s, a) p(s ∣s, a) [r(s, a, s) +
a∈A(s)

∑
s ∈S′

∑ ′ ′ γ V (s)] ∀s ∈0
′ S

V (s)1 V (s)2

V (s) ←2 π(s, a) p(s ∣s, a) [r(s, a, s) +
a∈A(s)

∑
s ∈S′

∑ ′ ′ γ V (s)] ∀s ∈1
′ S

V (s) ←k+1 π(s, a) p(s ∣s, a) [r(s, a, s) +
a∈A(s)

∑
s ∈S′

∑ ′ ′ γ V (s)] ∀s ∈k
′ S

V =∞ V π

9 / 24

Bellman operator
The Bellman operator is a mapping between two vector spaces:

If you apply repeatedly the Bellman operator on any initial vector , it converges towards the solution of
the Bellman equations .

Mathematically speaking, is a -contraction, i.e. it makes value functions closer by at least :

The contraction mapping theorem ensures that converges to an unique fixed point:

Existence and uniqueness of the solution of the Bellman equations.

T π

T (V) =π R +π γ P Vπ

V 0

Vπ

T π γ γ

∣∣T (V) −π T (U)∣∣ ≤π
∞ γ ∣∣V −U∣∣ ∞

T π

10 / 24

Backup diagram of IPE
Iterative Policy Evaluation relies on full backups: it backs up the value of ALL possible successive states
into the new value of a state.

Backup diagram: which other values do you need to know in order to update one value?

The backups are synchronous: all states are backed up in parallel.

The termination of iterative policy evaluation has to be controlled by hand, as the convergence of the
algorithm is only at the limit.

It is good practice to look at the variations on the values of the different states, and stop the iteration
when this variation falls below a predefined threshold.

V (s) ←k+1 π(s, a) p(s ∣s, a) [r(s, a, s) +
a∈A(s)

∑
s ∈S′

∑ ′ ′ γ V (s)] ∀s ∈k
′ S

V =k+1 R +π γ P V

π
k

11 / 24

Iterative policy evaluation
For a fixed policy , initialize .

while not converged:

for all states :

for all states :

if :

converged = True

π V (s) = 0 ∀s ∈ S

s

V (s) =target π(s, a) p(s ∣s, a) [r(s, a, s) +∑a∈A(s) ∑s ∈S′
′ ′ γ V (s)]′

δ = 0

s

δ = max(δ, ∣V (s) − V (s)∣)target

V (s) = V (s)target

δ < δ threshold

12 / 24

Dynamic Programming (DP)
Dynamic Programming (DP) iterates over two steps:

1. Policy evaluation

For a given policy , the value of all states or all state-
action pairs is calculated based on the Bellman
equations:

2. Policy improvement

From the current estimated values or , a new
better policy is derived.

π V (s)π

Q (s, a)π

V (s) =π
 π(s, a) p(s ∣s, a) [r(s, a, s) +

a∈A(s)

∑
s ∈S′

∑ ′ ′ γ V (s)]π ′

V (s)π Q (s, a)π

π

13 / 24

Policy improvement
For each state , we would like to know if we should deterministically choose an action or not
in order to improve the policy.

The value of an action in the state for the policy is given by:

If the Q-value of an action is higher than the one currently selected by the deterministic policy:

then it is better to select once in and thereafter follow .

If there is no better action, we keep the previous policy for this state.

This corresponds to a greedy action selection over the Q-values, defining a deterministic policy :

s a = π(s)

a s π

Q (s, a) =π
 p(s ∣s, a) [r(s, a, s) +

s ∈S′

∑ ′ ′ γ V (s)]π ′

a

Q (s, a) >π Q (s,π(s)) =π V (s)π

a s π

π(s)

π(s) ← argmax Q (s, a) =a
π

 p(s ∣s, a) [r(s, a, s) +
s ∈S′

∑ ′ ′ γ V (s)]π ′

14 / 24

Policy improvement
After the policy improvement, the Q-value of each deterministic action has increased or stayed the
same.

This defines an improved policy , where all states and actions have a higher value than previously.

Greedy action selection over the state value function implements policy improvement:

for each state :

π(s)

argmax Q (s, a) =a
π

 p(s ∣s, a) [r(s, a, s) +
s ∈S′

∑ ′ ′ γ V (s)] ≥π ′ Q (s,π(s))π

π′

π ←′ Greedy(V)π

Greedy policy improvement:

s ∈ S

π(s) ← argmax p(s ∣s, a) [r(s, a, s) +a ∑s ∈S′
′ ′ γ V (s)]π ′

15 / 24

Policy iteration
Once a policy has been improved using to yield a better
policy , we can then compute and improve it again to
yield an even better policy .

The algorithm policy iteration successively uses policy
evaluation and policy improvement to find the optimal policy.

The optimal policy being deterministic, policy improvement can be greedy over the state values.

If the policy does not change after policy improvement, the optimal policy has been found.

π V π

π′ V π′

π′′

π 0
E

V

π 0
I

π 1
E

V

π1 I
...

I
π

∗ E
V ∗

16 / 24

Policy iteration
Initialize a deterministic policy and set .

while is not optimal:

while not converged: # Policy evaluation

for all states :

for all states :

for each state : # Policy improvement

if has not changed: break

π(s) V (s) = 0 ∀s ∈ S

π

s

V (s) =target π(s, a) p(s ∣s, a) [r(s, a, s) +∑a∈A(s) ∑s ∈S′
′ ′ γ V (s)]′

s

V (s) = V (s)target

s ∈ S

π(s) ← argmax p(s ∣s, a) [r(s, a, s) +a ∑s ∈S′
′ ′ γ V (s)]π ′

π

17 / 24

2 - Value iteration

18 / 24

Value iteration
One drawback of policy iteration is that it uses a full policy evaluation, which can be computationally
exhaustive as the convergence of is only at the limit and the number of states can be huge.

The idea of value iteration is to interleave policy evaluation and policy improvement, so that the policy is
improved after EACH iteration of policy evaluation, not after complete convergence.

As policy improvement returns a deterministic greedy policy, updating of the value of a state is then
simpler:

Note that this is equivalent to turning the Bellman optimality equation into an update rule.

Value iteration converges to , faster than policy iteration, and should be stopped when the values do
not change much anymore.

V k

V (s) =k+1 p(s ∣s, a)[r(s, a, s) +
a

max
s′

∑ ′ ′ γ V (s)]k
′

V ∗

19 / 24

Value iteration
Initialize a deterministic policy and set .

while not converged:

for all states :

for all states :

if :

converged = True

π(s) V (s) = 0 ∀s ∈ S

s

V (s) =target max p(s ∣s, a) [r(s, a, s) +a ∑s ∈S′
′ ′ γ V (s)]′

δ = 0

s

δ = max(δ, ∣V (s) − V (s)∣)target

V (s) = V (s)target

δ < δ threshold

20 / 24

Comparison of Policy- and Value-iteration
Full policy-evaluation backup

Full value-iteration backup

V (s) ←k+1 π(s, a) p(s ∣s, a) [r(s, a, s) +
a∈A(s)

∑
s ∈S′

∑ ′ ′ γ V (s)]k
′

V (s) ←k+1 p(s ∣s, a) [r(s, a, s) +
a∈A(s)
max

s ∈S′

∑ ′ ′ γ V (s)]k
′

21 / 24

Asynchronous dynamic programming
Synchronous DP requires exhaustive sweeps of the entire state set (synchronous backups).

while not converged:

for all states :

for all states :

Asynchronous DP updates instead each state independently and asynchronously (in-place):

while not converged:

Pick a state randomly (or following a heuristic).

Update the value of this state.

We must still ensure that all states are visited, but their frequency and order is irrelevant.

s

V (s) =target max p(s ∣s, a) [r(s, a, s) +a ∑s ∈S′
′ ′ γ V (s)]′

s

V (s) = V (s)target

s

V (s) = p(s ∣s, a) [r(s, a, s) +
a

max
s ∈S′

∑ ′ ′ γ V (s)]′

22 / 24

Efficiency of Dynamic Programming
Policy-iteration and value-iteration consist of alternations
between policy evaluation and policy improvement, although
at different frequencies.

This principle is called Generalized Policy Iteration (GPI).

Finding an optimal policy is polynomial in the number of
states and actions: (is the number of states,
the number of actions).

However, the number of states is often astronomical, e.g.,
often growing exponentially with the number of state variables
(what Bellman called “the curse of dimensionality”).

In practice, classical DP can only be applied to problems with
a few millions of states.

O(n m)2 n m

23 / 24

Curse of dimensionality

Source:

If one variable can be represented by 5 discrete values:

2 variables necessitate 25 states,

3 variables need 125 states, and so on…

The number of states explodes exponentially with the number of dimensions of the problem.

https://medium.com/diogo-menezes-borges/give-me-the-antidote-for-the-curse-of-dimensionality-b14bce4bf4d2

24 / 24

https://medium.com/diogo-menezes-borges/give-me-the-antidote-for-the-curse-of-dimensionality-b14bce4bf4d2

