REEHS

UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE

CHEMNITZ

Deep Reinforcement Learning

Function approximation

Julien Vitay

Professur fur Kunstliche Intelligenz - Fakultat fir Informatik

1/42

1 - Limits of tabular RL

Tabular reinforcement learning

e All the methods seen so far belong to tabular RL.

e Q-learning necessitates to store in a Q-table one Q-value per state-action pair (s, a).

Game Board: Q Table: y =0.95
| [’ | 000 000 000 100 010 001
i 100 010 001 000 000 000
i LB,
E bioied 0.2 0.3 1.0 | -0.22 -0.3 0.0
Current state (s): g E g -0.5 -0.4 -0.2 -0.04 | -0.02 0.0

—> | 021 | 04 | -03 | 05 | 1.0 | 0.0
(=

-06 | -0.1 -0.1 | -0.31 | -0.01 | 0.0

Source: https://towardsdatascience.com/grash-course-deep-g-networks-from-the-ground-up-1bbda41d3677

3/42

https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677

Tabular reinforcement learning

o If a state has never been visited during learning, the Q-values will still be at their initial value (0.0), no
nolicy can be derived.

Visited state Not visited state
different pixel
s i —= .
Optimal action: left Optimal action: ?

e Similar states likely have the same optimal action: we want to be able to generalize the policy between
states.

4/42

Tabular reinforcement learning

e For most realistic problems, the size of the Q-table becomes quickly untractable.

-| _'.'.'=' -| |-
aEEElaEn |
 S_esnes |
[| e
EEDEED
BEERRENR
1 1 I
Gridworld Tetris
10M 10760

o If you use black-and-white 256x256 images as inputs, you have 22°0*296

e Tabular RL is limited to toy problems.

Atari
107308 (ram) 1016992 (pixels)

Source: https://medium.com/@twt446/a-summary-of-deep-reinforcement-learning-rl-bootcamp-lecture-2-c3a15db5934e

— 1019728 possible states!

5/42

https://medium.com/@twt446/a-summary-of-deep-reinforcement-learning-rl-bootcamp-lecture-2-c3a15db5934e

Tabular RL cannot learn to play video games

= -—
T~ ‘
L7 SNNT
e ' ¥ -3 :
f f S 4 '{\
B
s }' & .
t : - Y
| ; = & ™ o
- i . g _._..#""-
‘L -_—E-th—_*f-if -

1\-I :

reward | r;

6/42

Continuous action spaces

e Tabular RL only works for small discrete action spaces.

e Robots have continuous action spaces, where the actions are changes in joint angles or torques.

e Ajoint angle could take any value in |0, 7r|.

action 4 action 5

action 6

action 1 action 2

7142

Continuous action spaces

o A solution would be to discretize the action space (one action per degree), but we would fall into the

curse of dimensionality.

e The more degrees of freedom, the more discrete actions, the more entries in the Q-table...

e Tabular RL cannot deal with continuous action spaces, unless we approximate the policy with an actor-

critic architecture.

__V
g /
|
f (t d
1 | ;__f'
J7_-'"'
r
Y ——
| A I
= N [
Z
X

8/42

2 - Function approximation

Feature vectors

e Let’s represent a state s by a vector of d features

d(s) = [P1(s), P2(s), ..., da(s)]".

e For the cartpole, the feature vector would be:

.
o(s) = |
9.

e T is the position, § the angle, & and 6 their
derivatives.

 We are able to represent any state s using these
four variables.

10/42

Feature vectors

e For more complex problems, the feature vector should include all the necessary information (Markov

property).
_
x position of the paddle
x position of the ball
y position of the ball
x speed of the ball

P(s) = y speed of the position
presence of brick 1
presence of brick 2

e In deep RL, we will learn these feature vectors, but let's suppose for now that we have them.

11/ 42

Feature vectors

e Note that we can always fall back to the tabular case using one-hot encoding of the states:

1 0 0
0 1 0
P(s1) = | 0 P(s2) = | O P(s3) = | 1

e But the idea is that we can represent states with much less values than the number of states:

d < |S]

e We can also represent continuous state spaces with feature vectors.

12 /42

State value approximation

e In state value approximation, we want to approximate the state value function V'™ (s) with a
parameterized function V,,(s):

Vo(s) = V7™(s)

Feature vector

Approximated
Parameterized value
State function
S —_— —_— . Vgp (S)
parameters:
¥

e The parameterized function can have any form. Its has a set of parameters ¢ used to transform the
feature vector ¢(s) into an approximated value V,,(s).

13/42

Linear approximation of state value functions
e The simplest function approximator (FA) is the linear approximator.

Feature vector

¢(s)

Approximated
value
State e
— —_— V
S
weights W

o The approximated value is a linear combination of the features:

sz¢z = w' qu()

 The weight vector w = |wy, wa, ..., wd]Tis the set of parameters ¢ of the function.

o A linear approximator is a single artificial neuron (linear regression) without a bias.

14 /42

Learning the state value approximation

Feature vector

Approximated
Parameterized value
State function
— —_—
S - Vo, (s)
parameters:
¥

e Regardless the form of the function approximator, we want to find the parameters ¢ making the
approximated values V,,(s) as close as possible from the true values V™ (s) for all states s.

= This is a regression problem.

 We want to minimize the mean square error between the two quantities:

min £(p) = Eses[(V™(s) — Vi (s))"]

»

o The loss function L£(() is minimal when the predicted values are close to the true ones on average for all
states.

15/42

Learning the state value approximation

e Let's suppose that we know the true state values V”(s) for all states and that the parameterized function
is differentiable.

£(6) A e We can find the minimum of the loss function by
applying gradient descent (GD) iteratively:
e fnction Ap =-—nV,L(p)
new 0L(0p)
minimum value .
0% .. 7 « V,L(p) is the gradient of the loss function w.r.t to
_: . the parameters .
valve 6
Do OLle)"
240
V,L(p) = | 9
0L(¢)
- 890}(-

 When applied repeatedly, GD converges to a local minimum of the loss function.

16 /42

Learning the state value approximation

e To minimize the mean square error,

min £(p) = Eses[(V™(s) — Vi (s))"]

2

we will iteratively modify the parameters ¢ according to:

Ap = pri1 — on = NV L(p) = —nVeEees[(VT(s) — Vy(s))’]

= Eses[-n Vo (V7 (s) = Vio(s))’]

= Esesn (V7 (s) = V(s)) Vi Vi (3)]

e As it would be too slow to compute the expectation on the whole state space (batch algorithm), we will
sample the quantity:

0p =M (V7 (8) — Vy(s)) Vi Vi(s)

and update the parameters with stochastic gradient descent (SGD).

17 /42

Learning the state value approximation

e Gradient of the mse;

Ap = Esesn (V™(s) — Vi(8)) Vi Vi(s))

o If we sample K states s; from the state space:

Ap =n % > (V7 (sk) = Vip(s1)) Vi Vo (1)
k=1

e We can also sample a single state s (online algorithm):

Ap =n(V"(s) — V,(s)) Vi,V (s)

e Unless stated otherwise, we will sample single states in this section, but the parameter updates will be
noisy (high variance).

18 /42

Linear approximation

Feature vector

¢(s)

Approximated
value

State

o - Vso(s)

weights W

 The approximated value is a linear combination of the features:

wa&@ =w' X ¢(s)

 The weights are updated using stochastic gradient descent:

Aw = (V7 (s) — V() $(s)

o That is the delta learning rule of linear regression and classification, with ¢(s) being the input vector and
V™(s) — Vi, (s) the prediction error.

19/42

Function approximation with sampling

e The rule can be used with any function approximator, we only need to be able to differentiate it:

e The problem is that we do not know V”(s), as it is what we are trying to estimate.

« We can replace V™ (s) by a sampled estimate using Monte-Carlo or TD:

Ap =n(V"(s) — V,(s)) Vi,V (s)

= Monte-Carlo function approximation:

Ap =n(Ri — V,(s)) Vo V(s

= Temporal Difference function approximation:

Ap =n(rg1 +7Ve(s") = Vi(s)) Vo Vi (s)

e Note that for Temporal Difference, we actually want to minimize the TD reward-prediction error for all

states, i.e. the surprise:

L(p)

Lses [(riv1 + 7 Vi (s') — Vio(s))]

)

LseS [53]

20 /42

Gradient Monte Carlo Algorithm for value estimation

e Algorithm:

= |nitialize the parameter ¢ to 0 or randomly.

= while not converged:

1. Generate an episode according to the current policy 7 until a terminal state s is reached.

T = (Soaaoarlaslaala . . '78T)

2. For all encountered states sg, $1,...,87_1:

1. Compute the return R = Zk 'ykrt+k+1 .

2. Update the parameters using function approximation:
Ap =n (Rt — Vy(st)) VpVi(st)

e Gradient Monte-Carlo has no bias (real returns) but a high variance.

21/42

Semi-gradient Temporal Difference Algorithm for value estimation

e Algorithm:

= |nitialize the parameter ¢ to 0 or randomly.

= while not converged:
o Start from an initial state sg.
o foreach step t of the episode:
o Select a; using the current policy 7 in state s;.

o Observe r;11 and S4.1.

o Update the parameters using function approximation:

Ap =n(riq + ’YVso(StJrl) — Vw(st)) vaso(st)

o if 8411 is terminal: break

» Semi-gradient TD has less variance, but a significant bias as V,,(s;-1) is initially wrong. You can never
trust these estimates completely.

22142

Function approximation for Q-values

e Q-values can be approximated by a parameterized function Qg(s, a) In the same manner.

e There are basically two options for the structure of the function approximator:

e The FA takes a feature vector for both the state s
and the action a (which can be continuous) as
inputs, and outputs a single Q-value Qg (s, a).

Feature vector

d(s,a)
State

—_—

S Parameterized
function
—_—
parameters:
Action 0

a —_—

Approximated
value

— Q@(S, CL)

e The FA takes a feature vector for the state s as
input, and outputs one Q-value Qg (s, a) per

possible action (the action space must be
discrete).

State
S

Feature vector

¢(s)

Parameterized
function

parameters:

0

Approximated
values

CQ@(Saal)

Q@(Sa a’2)
QQ(Sa CLg)

o In both cases, we minimize the mse between the true value Q™ (s, a) and the approximated value

Qo(s,a).

23 /42

Q-learning with function approximation

e Initialize the parameters 6.

e while True:
= Start from an initial state sy.
= foreach step ? of the episode:
o Select a; using the behavior policy b (e.g. derived from).
o Take a;, observe r;11 and S;. 1.

o Update the parameters 6

A =1 (re41 + 7 max Qp(sti1,a) — Qo(st;at)) VoQo(st, ar)

o Improve greedily the learned policy:

T‘-(Sta (1,) — GI’GGdY(Qg(St, (1,))

o if 8411 is terminal: break

24 142

3 - Feature construction

25/42

Feature construction

o Before we dive into deep RL (i.e. RL with non-linear FA), let's see how we can design good feature vectors
for linear function approximation.

Agent DNN #ﬂfzgcaé)

[%)
W~ X0
N A7 \‘

7
xi*.lf.. & __‘%‘F}

O [vei”
State —O%%
"" [

!..;} ¢
A\
P /. o

parameter 6

Environment

Observe state

e The problem with deep NN is that they need a lot of samples to converge, what worsens the fundamental
problem of RL: sample efficiency.

e By engineering the right features, we could use linear approximators, which converge much faster.

e The convergence of linear FA is guaranteed, not (always) non-linear ones.

26/42

Why do we need to choose features?

e No, a high angular velocity 0 is good when the pole is horizontal (going up) but bad if the pole is vertical
(will not stop).

e The value would depends linearly on something like 9 sin 0, which is a non-linear combination of

features.

o For the cartpole, the feature vector ¢(s) could be:

#(s) =

e x is the position, 8 the angle, and 0 their derivatives.

T
T
0
0

e Can we predict the value of a state linearly?

Z’wz ¢z

=w X ¢(s)

27 142

Feature coding

e Let's suppose we have a simple problem where the state s is represented by two continuous variables x
and y.

e The true value function V™ (s) is a non-linear function of x and y.

1.0 Vis)

state s
&

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

28 /42

Linear approximation

o If we apply linear FA directly on the feature vector |, y|, we catch the tendency of V7 (s) but we make a

lot of bad predictions:

= high bias (underfitting).

1.0

0.2

0.0

0.0

V(s
(s) 1.0
0.8
state s
Il 0.6
.
0.4
0.2
0.0
0.2 0.4 0.6 0.8 1.0

state s

0.0

0.2

0.4

0.6

0.8

1.0

29 /42

Polynomials

e To introduce non-linear relationships between continuous variables, a simple method is to construct the
feature with polynomials of the variables.

e Example with polynomials of order 2:
T
ds)=11 = y zy z° ¢’

e We transform the two input variables x and vy into a vector with 6 elements. The 1 (order 0) is there to
learn the offset.

e Example with polynomials of order 3:

qb(s) _ [1 T Y TY $2 yZ 2132 y y2 333 yB] T

e And so on. We then just need to apply linear FA on these feature vectors (polynomial regression).

Vso(s):w0+’w1$+’w2y+W3wy+w4x2+w5y2+...

30/42

Polynomials

e Polynomials of order 2 already allow to get a better approximation.

1.0

0.2

0.0

Vi(s)

state s

0.0

0.2

0.4

0.6

0.8

1.0

0.0

Vip(s)
state s
[
0.0 0.2 0.4 0.6 0.8
X

1.0

31/42

Polynomials

e Polynomials of order 6 are an even better fit for our problem.

1.0

0.2

0.0

Vi(s)

state s

0.0

0.2

0.4

0.6

0.8

1.0

1.0

0.2

0.0

Vip(s)
state s
[
0.0 0.2 0.4 0.6 0.8
X

1.0

32/42

Polynomials

e The higher the degree of the polynomial, the better the fit, but the number of features grows exponentially.

= Computational complexity.

= Overfitting: if we only sample some states, high-order polynomials will not interpolate correctly.

Underfitting Good Overfitting

33 /42

Fourier transforms

e Instead of approximating a state variable & by a polynomial:

V,(s) =wo +wyz +wyx° +wsx® + ...

e we could also use its Fourier decomposition (here DCT, discrete cosine transform):

V,(s) = wy + w; cos(max) + wy cos(2mx) + ws cos(3mx) + ...

e Fourier tells us that, if we take enough frequencies, we can reconstruct the signal VSO(S) perfectly.

Figure 9.3: One-dimensional Fourier cosine-basis features x;, 1 = 1, 2, 3, 4, for approximating
functions over the interval [0, 1]. After Konidaris et al. (2011).

e |tisjustachange of basis, the problem stays a linear regression to find wg, wi, w», etc.

34 /42

Fourier transforms

e Fourier transforms can be applied on multivariate functions as well.

c=(0,1)" | c=(1,0)"

Figure 9.4: A selection of six two-dimensional Fourier cosine features, each labeled by the
vector ¢ that defines it (s; is the horizontal axis, and ¢’ is shown with the index 7 omitted).

After Konidaris et al. (2011).

35/42

Polynomial vs. Fourier basis

4L

VE 2r - Polynomial basis
averaged R A fhas 4 aa
over 30 runs 1 ' T
Fourier basis = T N
OF, |
0 5000

Episodes

Figure 9.5: Fourier basis vs polynomials on the 1000-state random walk. Shown are learning
curves for the gradient Monte Carlo method with Fourier and polynomial bases of order 5, 10,
and 20. The step-size parameters were roughly optimized for each case: a = 0.0001 for the
polynomial basis and a = 0.00005 for the Fourier basis. The performance measure (y-axis) is
the root mean squared value error (9.1).

e A Fourier basis tends to work better than a polynomial basis.
 The main problem is that the number of features increases very fast with:
= the number of input dimensions.

= the desired precision (higher-order polynomials, more frequencies).

36/42

Discrete coding

e An obvious solution for continuous state variables is to discretize the input space.

 The input space is divided into a grid of non-overlapping tiles.

v (s) e The feature vector is a binary vector with a 1 when
@

1.0 the input is inside a tile, 0 otherwise.
T
0.8 qb(s):[() o ... 01 0 ... 0}
S NS « This ensures generalization inside a tile: you only
0.6 - . . .
need a couple of samples inside a tile to know the
> mean value of all the states.
0.4 e Drawbacks:
= the value function is step-like (discontinuous).
0.2 = what is the correct size of a tile?
= curse of dimensionality.

0.0

0.0 0.2 0.4 0.6 0.8 1.0

37 /42

Coarse coding

e A more efficient solution is coarse coding.

e The tiles (rectangles, circles, or what you need) need to
overlap.

e A state s is encoded by a binary vector, but with several 1, for
each tile it belongs.

$(s)=10 1. 0 ... 1 1 0 ... O]

e This allows generalization inside a tile, but also across tiles.

e The size and shape of the “receptive field” influences the generalization properties.

Narrow generalization Broad generalization Asymmetric generalization

Tile coding

e A simple way to ensure that tiles overlap is to use several regular grids with an offset.

e Each tiling will be coarse, but the location of a state will be quite precise as it may belong to many tiles.

Contint

10US

Tiling 4

2D state

\ Point in

state space
to be

represented

. ——nimgl —

Tiling 2

Tiling 3/

o e e e e e e g e e e e e e e

_— |

I

H-‘\H"—--..‘

|

!
T

L e e — -

b — — — —

Four active

tiles/features
overlap the point
_— and are used to

represent it

Figure 9.9: Multiple, overlapping grid-tilings on a limited two-dimensional space. These tilings

are offset from one another by a uniform amount in each dimension.

e This helps against the curse of dimensionality: high precision, but the number of tiles does not grow

exponentially.

39/42

Radial-basis functions (RBF)

e The feature vector in tile coding is a binary vector: there will be discontinuous jumps in the approximated
value function when moving between tiles.

e We can use radial-basis functions (RBF) such as Gaussians to map the state space.

| | |
Ciol ¢ Citl

« We set a set of centers {¢; ,fil in the input space on a regular grid (or randomly).

e Each element of the feature vector will be a Gaussian function of the distance between the state s and
one center:

40/ 42

Radial-basis functions (RBF)

Ciil ¢ Citl

e The approximated value function now represents continuously the states:

sz oi(s sz exp _ SZ;CZ)Q

e |f you have enough centers and they overlap sufficiently, you can even decode the original state perfectly:

d
=D _di(s)e
1=1

411/42

Summary of function approximation

Feature vector

d(5)
Approximated
Parameterized value
State function
— —_—
S - Ve, (3)
parameters:
¥

e In FA, we project the state information into a feature space to get a better representation.

e We then apply a linear approximation algorithm to estimate the value function:

Vo(s) = w ¢(s)

e The linear FA is trained using some variant of gradient decent:

Aw = (V7 (s) — Vi (s)) (s)

o Deep neural networks are the most powerful function approximators in supervised learning.

e Do they also work with RL?

42142

