
Deep Reinforcement Learning
Deep learning

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1
/
26

1 - Artificial neural networks

2
/
26

Artificial neural networks
An artificial neural network (ANN) is a cascade of fully-connected (FC) layers of artificial neurons.

Each layer transforms an input vector into an output vector using a weight matrix , a bias
vector and an activation function .

Overall, ANNs are non-linear parameterized function estimators from the inputs to the outputs with
parameters (all weight matrices and biases).

k h ​k−1 h ​k W ​k

b ​k f()

h ​ =k f(W ​ ×k h ​ +k−1 b ​)k

x y
θ

y = F ​(x)θ

3
/
26

Loss functions
ANNs can be used for both regression (continuous outputs) and classification (discrete outputs) tasks.

In supervised learning, we have a fixed training set of samples , where is the desired
output or target.

Regression:

The output layer uses a linear activation function:

The network minimizes the mean square error (mse) of the model on the training set:

Classification:

The output layer uses the softmax operator to produce a probability distribution:

The network minimizes the cross-entropy or negative log-likelihood of the model on the training set:

D N (x ​, t ​)t i t ​i

f(x) = x

L(θ) = E ​[∣∣t −x,t∈D y∣∣]2

y ​ =j ​

​ e∑k
zk

e
z ​j

L(θ) = E [−t logy]x,t∈D

4
/
26

Cross-entropy
The cross-entropy between two probability distributions and measures their similarity:

Are samples from likely under ?

Minimizing the cross-entropy makes the two distributions equal almost anywhere.

samples from X

X Y

H(X,Y) = E ​[− logP (Y =x∼X x)]

X Y

5
/
26

Cross-entropy
In supervised learning, the targets are fixed one-hot encoded vectors.

But it could be any target distribution.

t

L(θ) = E [− ​ t ​ log y ​]x,t∈D

j

∑ j j

6
/
26

Backpropagation
In both cases, we want to minimize the loss function by applying Stochastic Gradient Descent (SGD) or a
variant (Adam, RMSprop).

The question is how to compute the gradient of the loss function w.r.t the parameters .

For both the mse and cross-entropy loss functions, we have:

There is an algorithm to compute efficiently the gradient of the output w.r.t the parameters:
backpropagation (see Neurocomputing).

In deep RL, we do not care about backprop: tensorflow or pytorch do it for us.

Δθ = −η ∇ ​L(θ)θ

θ

∇ ​L(θ) =θ E ​[−(t −D y) ∇ ​ y]θ

Rumelhart, Hinton, Williams (1986). “Learning representations by back-propagating errors”. Nature. 7
/
26

Components of neural networks

There are three aspects to consider when building a neural network:

1. Architecture: how many layers, what type of layers, how many neurons, etc.

Task-dependent: each RL task will require a different architecture. Not our focus.

2. Loss function: what should the network do?

Central to deep RL!

3. Update rule how should we update the parameters to minimize the loss function? SGD, backprop.

Not really our problem, but see natural gradients later.

θ

8
/
26

2 - Convolutional neural networks

9
/
26

Convolutional layers
When using images as inputs, fully-connected
networks (FCN) would have too many weights:

Slow.

Overfitting.

Convolutional layers reduce the number of weights
by reusing weights at different locations.

Principle of a convolution.

Fast and efficient.

10
/
26

Convolutional layers
A convolutional layer extracts features of its
inputs.

 filters are defined with very small sizes (3x3,
5x5…).

Each filter is convoluted over the input image (or
the previous layer) to create a feature map.

The set of feature maps becomes a new 3D
structure: a tensor.

If the input image is 32x32x3, the resulting tensor
will be 32x32xd.

The convolutional layer has only very few
parameters: each feature map has 3x3 values in
the filter and a bias, i.e. 10 parameters.

The convolution operation is differentiable:
backprop will work.

Source: https://github.com/vdumoulin/conv_arithmetic

d

d

11
/
26

https://github.com/vdumoulin/conv_arithmetic

Max-pooling

The number of elements in a convolutional layer is still too high. We need to reduce the spatial dimension
of a convolutional layer by downsampling it.

For each feature, a max-pooling layer takes the maximum value of a feature for each subregion of the
image (mostly 2x2).

Pooling allows translation invariance: the same input pattern will be detected whatever its position in the
input image.

Max-pooling is also differentiable.

Source: http://cs231n.github.io/convolutional-networks/

12
/
26

http://cs231n.github.io/convolutional-networks/

Convolutional neural networks

A convolutional neural network (CNN) is a cascade of convolution and pooling operations, extracting
layer by layer increasingly complex features.

The spatial dimensions decrease after each pooling operation, but the number of extracted features
increases after each convolution.

One usually stops when the spatial dimensions are around 7x7.

The last layers are fully connected. Can be used for regression and classification depending on the output
layer and the loss function.

Training a CNN uses backpropagation all along: the convolution and pooling operations are differentiable.

13
/
26

Convolutional neural networks

Source:

The only thing we need to know is that CNNs are non-linear function approximators that work well with
images.

The conv layers extract complex features from the images through learning.

The last FC layers allow to approximate values (regression) or probability distributions (classification).

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

y = F ​(x)θ

14
/
26

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

3 - Autoencoders

15
/
26

Autoencoders
The problem with FCN and CNN is that they extract
features in supervised learning tasks.

Need for a lot of annotated data (image, label).

Autoencoders allows unsupervised learning:

They only need inputs (images).

Their task is to reconstruct the input:

The reconstruction loss is simply the mse between the input and its reconstruction.

Apart from the loss function, they are trained as regular NNs.

y = ≈x~ x

L (θ) =autoencoder E ​[∣∣ −x∈D x~ x∣∣]2

16
/
26

Autoencoders
Autoencoders consists of:

the encoder: from the input to the latent space .

the decoder: from the latent space to the reconstructed input .

Source:

x z

z x~

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

17
/
26

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

Autoencoders
The latent space is a compressed representation (bottleneck) of the inputs .

It has to learn to compress efficiently the inputs without losing too much information, in order to
reconstruct the inputs.

Dimensionality reduction.

Unsupervised feature extraction.

Source:

z x

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

18
/
26

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

Autoencoders in deep RL
In deep RL, we can construct the feature vector with an autoencoder.

The autoencoder can be trained offline with a random agent or online with the current policy (auxiliary
loss).

Encoder

Decoder

Latent space
=

Feature vector
Function

approximator

Approximated
value

State

Reconstructed
state

19
/
26

4 - Recurrent neural networks

20
/
26

Recurrent neural networks
FCN, CNN and AE are feedforward neural networks: they transform an input into an output :

If you present a sequence of inputs to a feedforward network, the outputs will be
independent from each other:

The output does not depend on the history of inputs .

x y

y = F ​(x)θ

x ​,x ​, … ,x ​0 1 t

y ​ =0 F ​(x ​)θ 0

y ​ =1 F ​(x ​)θ 1

…

y ​ =t F ​(x ​)θ t

y ​t x ​,x ​, … ,x ​0 1 t−1

21
/
26

Recurrent neural networks
This not always what you want.

If your inputs are frames of a video, the correct response at time might also depend on previous frames.

Source:

The task of the NN could be to explain what happens at each frame.

As we saw, a single frame is often not enough to predict the future (Markov property).

t

https://srirangatarun.wordpress.com/2018/07/09/video-frame-prediction-with-keras/

22
/
26

https://srirangatarun.wordpress.com/2018/07/09/video-frame-prediction-with-keras/

Recurrent neural networks
A recurrent neural network (RNN) uses it previous output as an
additional input (context).

All vectors have a time index denoting the time at which this
vector was computed.

The input vector at time is , the output vector is :

The input and previous output are multiplied by learnable weights:

 is the input weight matrix.

 is the recurrent weight matrix.

Source: C. Olah

t

t x ​t h ​t

h ​ =t f(W ​ ×x x ​ +t W ​ ×h h ​ +t−1 b)

x ​t h ​t−1

W ​x

W ​h

23
/
26

Recurrent neural networks

Source: C. Olah

This is equivalent to a deep neural network taking the whole history as inputs, but reusing
weights between two time steps.

The weights are trainable using backpropagation through time (BPTT).

A RNN can learn the temporal dependencies between inputs.

x ​,x ​, … ,x ​0 1 t

24
/
26

LSTM cell
A popular variant of RNN is LSTM (long short-term
memory).

In addition to the input and output , it also has
a state (or memory or context) which is
maintained over time.

It also contains three multiplicative gates:

The input gate controls which inputs should
enter the memory.

The forget gate controls which memory should
be forgotten.

The output gate controls which part of the
memory should be used to produce the output.

Source: C. Olah

x ​t h ​t

C ​t

25
/
26

RNN in RL

An obvious use case of RNNs in deep RL is for POMDP (partially observable MDP).

If the individual states do not have the Markov property, the output of a LSTM
does:

The output of the RNN is a representation of the complete history
.

We can apply RL on the output of a RNN and solve POMDPs for free!

Source: https://deepmind.com/blog/article/capture-the-flag-science

s ​t

s ​, s ​, … , s ​0 1 t

26
/
26

https://deepmind.com/blog/article/capture-the-flag-science

