
Deep Reinforcement Learning
Deep Q-Learning

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1 / 55

Value-based deep RL

The basic idea in value-based deep RL is to approximate the Q-values in each possible state, using a
deep neural network with free parameters :

The Q-values now depend on the parameters of the DNN.

The derived policy uses for example an -greedy or softmax action selection scheme over the
estimated Q-values:

θ

Q (s, a) ≈θ Q (s, a) =π E (R ∣s =π t t s, a =t a)

θ

π θ ϵ

π (s, a) ←θ Softmax(Q (s, a))θ

2 / 55

Function approximators to learn the Q-values
There are two possibilities to approximate Q-values :

The DNN approximates the Q-value of a single
 pair.

The action space can be continuous.

The DNN approximates the Q-value of all actions
in a state .

The action space must be discrete (one neuron per
action).

Q (s, a)θ

(s, a)
a

s

Source: https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677 3 / 55

https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677

First naive approach: Q-learning with function approximation
We could simply adapt Q-learning with FA to the DNN:

Initialize the deep neural network with parameters .

Start from an initial state .

for :

Select using a softmax over the Q-values .

Take , observe and .

Update the parameters by minimizing the loss function:

if is terminal: sample another initial state .

Remark: We will now omit the break for terminal states, it is always implicitly here.

θ

s 0

t ∈ [0,T]total

a t Q (s , a)θ t

a t r t+1 s t+1

θ

L(θ) = (r +t+1 γ Q (s , a) −
a′

max θ t+1
′ Q (s , a))θ t t

2

s t s 0

4 / 55

DNN need stochastic gradient descent
This naive approach will not work: DNNs cannot learn from single examples (online learning = instability).

DNNs require stochastic gradient descent (SGD):

The loss function is estimated by sampling a minibatch of i.i.d samples from the training set to
compute the loss function and update the parameters .

This is necessary to avoid local minima of the loss function.

Although Q-learning can learn from single transitions, it is not possible using DNN.

Why not using the last transitions to train the network? We could store them in a transition buffer and
train the network on it.

L(θ) = E (∣∣t −D y∣∣) ≈2
 ∣∣t −

K

1

i=1

∑
K

i y ∣∣i
2

K

θ

K

5 / 55

Second naive approach: Q-learning with a transition buffer
Initialize the deep neural network with parameters .

Initialize an empty transition buffer of size : .

for :

Select using a softmax over the Q-values .

Take , observe and .

Store in the transition buffer.

Every steps:

Update the parameters using the transition buffer:

Empty the transition buffer.

θ

D K {(s , a , r , s)} k k k k
′

k=1
K

t ∈ [0,T]total

a t Q (s , a)θ t

a t r t+1 s t+1

(s , a , r , s)t t t+1 t+1

K

θ

L(θ) = (r +
K

1

k=1

∑
K

k γ Q (s , a) −
a′

max θ k
′ ′ Q (s , a))θ k k

2

6 / 55

Correlated inputs
Unfortunately, this does not work either.

The last transitions are not i.i.d (independent and identically distributed).

The transition depends on by definition, i.e. the transitions
are correlated.

Even worse, when playing video games, successive frames will be very similar or even identical.

The actions are also correlated: you move the paddle to the left for several successive steps.

K (s, a, r, s)′

(s , a , r , s)t+1 t+1 t+2 t+2 (s , a , r , s)t t t+1 t+1

7 / 55

Correlated inputs
Feeding transitions sequentially to a DNN is the same as giving all MNIST 0’s to a DNN, then all 1’s, etc… It
does not work.

In SL, we have all the training data before training: it is possible to get i.i.d samples by shuffling the
training set between two epochs.

In RL, we create the “training set” (transitions) during training: the samples are not i.i.d as we act
sequentially over time.

8 / 55

Non-stationarity
In SL, the targets do not change over time: an image of a cat stays an image of a cat throughout
learning.

The problem is said stationary, as the distribution of the data does not change over time.

t

L(θ) = E [∣∣t −x,t∼D F (x)∣∣]θ
2

9 / 55

Non-stationarity
In RL, the targets do change over time:

 depends on , so after one optimization step, all targets have changed!

As we improve the policy over training, we collect higher returns.

NN do not like this. After a while, they give up and settle on a suboptimal policy.

t

training

y

supervised learning

t

training

y

reinforcement learning

t *

t = r + γ max Q (s , a)a′ θ
′ ′

Q (s , a)θ
′ ′ θ

L(θ) = E [(r +s,a∼π θ γ Q (s , a) −
a′

max θ
′ ′ Q (s, a))]θ

2

10 / 55

Illustration of non-stationary targets
We want our value estimates to “catch” the true values.

https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/ 11 / 55

https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/

Illustration of non-stationary targets
We update our estimate to come closer to the target.

https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/ 12 / 55

https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/

Illustration of non-stationary targets
But the target moves! We need to update again.

https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/ 13 / 55

https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/

Illustration of non-stationary targets
This leads to very strange and inefficient optimization paths.

https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/ 14 / 55

https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/

1 - Deep Q-networks (DQN)

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., et al. (2013). Playing Atari with Deep Reinforcement Learning. http://arxiv.org/abs/1312.5602 15 / 55

http://arxiv.org/abs/1312.5602

Problem with non-linear approximators and RL

Non-linear approximators never really worked with RL before 2013 because of:

1. The correlation between successive inputs or outputs.

2. The non-stationarity of the problem.

These two problems are very bad for deep networks, which end up overfitting the learned episodes or not
learning anything at all.

Deepmind researchers proposed to use two classical ML tricks to overcome these problems:

1. experience replay memory.

2. target networks.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., et al. (2013). Playing Atari with Deep Reinforcement Learning. http://arxiv.org/abs/1312.5602 16 / 55

http://arxiv.org/abs/1312.5602

Experience replay memory
To avoid correlation between samples, (Mnih et al. 2015) proposed to store the transitions in
a huge experience replay memory or replay buffer (e.g. 1 million transitions).

Environment

DQN

Experience
Replay
Memory

(s, r, s')

(a)

Minibatch of experiences (s, a, r, s')

When the buffer is full, we simply overwrite old transitions.

The Q-learning update is only applied on a random minibatch of those past experiences, not the last
transitions.

This ensure the independence of the samples (non-correlated samples).

(s, a, r, s)′

D

17 / 55

Experience replay memory
Initialize value network .

Initialize experience replay memory of maximal size .

for :

Select an action based on , observe and .

Store in the experience replay memory.

Every steps:

Sample a minibatch randomly from .

For each transition in the minibatch:

Compute the target value

Update the value network on to minimize:

Q θ

D N

t ∈ [0,T]total

a t Q (s , a)θ t s t+1 r t+1

(s , a , r , s)t t t+1 t+1

T train

D s D

(s , a , r , s)k k k k
′

t =k r +k γ max Q (s , a)a′ θ k
′ ′

Q θ D s

L(θ) = E [(t −D s k Q (s , a))]θ k k
2

18 / 55

Experience replay memory

Environment

DQN

Experience
Replay
Memory

(s, r, s')

(a)

Minibatch of experiences (s, a, r, s')

But wait! The samples of the minibatch are still not i.i.d, as they are not identically distributed:

Some samples were generated with a very old policy .

Some samples have been generated recently by the current policy .

The samples of the minibatch do not come from the same distribution, so this should not work.

π θ 0

π θ

19 / 55

Experience replay memory
This should not work, except if you use an off-policy algorithm, such as Q-learning!

In Q-learning, you can take samples from any behavior policy , as long as the coverage assumption
stands:

Here, the behavior policy is a kind of “superset” of all past policies used to fill the ERM, so it “covers”
the current policy.

Samples from are i.i.d, so Q-learning is going to work.

Note: it is not possible to use an experience replay memory with on-policy algorithms.

 would not be the same between (which generated the sample) and (the current
policy).

Q (s, a) =π E [r +s ∼ρ ,a ∼bt b t t+1 γ Q (s , a)∣s =
a

max π
t+1 t s, a =t a]

b

π(s, a) > 0 ⇒ b(s, a) > 0

b π

b = {π ,π , … ,π }θ 0 θ 1 θ t

b

Q (s, a) =π E [r +s ∼ρ ,a ∼πt π t t+1 γ Q (s , a)∣s =π
t+1 t+1 t s, a =t a]

a ∼t+1 π θ π θ 0 π θ t

20 / 55

Target network
The second problem when using DNN for RL is that the target is non-stationary, i.e. it changes over time:
as the network becomes better, the Q-values have to increase.

In DQN, the target for the update is not computed
from the current deep network :

but from a target network updated only every few
thousands of iterations.

 is simply a copy of from the past.

DQN loss function:

θ

r + γ Q (s , a)
a′

max θ
′ ′

θ´

r + γ Q (s , a)
a′

max θ′
′ ′

θ′ θ

L(θ) = E [(r +D γ Q (s , a)) −
a′

max θ′
′ ′ Q (s, a))]θ

2

21 / 55

Target network
This allows the target to be stationary between two updates.

It leaves time for the trained network to catch up with the targets.

t

training

y

target networks

t *

t

training

y

reinforcement learning

t *

The update is simply replacing the parameters with the trained parameters :

The value network basically learns using an older version of itself…

r + γ max Q (s , a)a′ θ′
′ ′

θ′ θ

θ ←′ θ

θ

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., et al. (2013). Playing Atari with Deep Reinforcement Learning. http://arxiv.org/abs/1312.5602 22 / 55

http://arxiv.org/abs/1312.5602

DQN: Deep Q-network
Initialize value network and target network .

Initialize experience replay memory of maximal size .

for :

Select an action based on , observe and .

Store in the experience replay memory.

Every steps:

Sample a minibatch randomly from .

For each transition in the minibatch:

Compute the target value using the target network.

Update the value network on to minimize:

Every steps:

Update target network: .

Q θ Q θ′

D N

t ∈ [0,T]total

a t Q (s , a)θ t s t+1 r t+1

(s , a , r , s)t t t+1 t+1

T train

D s D

(s , a , r , s)k k k k
′

t =k r +k γ max Q (s , a)a′ θ′
k
′ ′

Q θ D s

L(θ) = E [(t −D s k Q (s , a))]θ k k
2

T target

θ ←′ θ

23 / 55

DQN: Deep Q-network
The deep network can be anything. Deep RL is only about defining the loss function adequately.

For pixel-based problems (e.g. video games), convolutional neural networks (without max-pooling) are the
weapon of choice.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., et al. (2013). Playing Atari with Deep Reinforcement Learning. http://arxiv.org/abs/1312.5602 24 / 55

http://arxiv.org/abs/1312.5602

Why no max-pooling?

The goal of max-pooling is to get rid of the spatial information in the image.

For object recognition, you do not care whether the object is in the center or on the side of the image.

Max-pooling brings spatial invariance.

In video games, you want to keep the spatial information: the optimal action depends on where the ball is
relative to the paddle.

25 / 55

Are individual frames good representations of states?
Is the ball moving from the child to the baseball player, or the other way around?

Using video frames as states breaks the Markov property: the speed and direction of the ball is a very
relevant information for the task, but not contained in a single frame.

This characterizes a Partially-observable Markov Decision Process (POMDP).

Source: https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-6-partial-observability-and-deep-recurrent-q-68463e9aeefc 26 / 55

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-6-partial-observability-and-deep-recurrent-q-68463e9aeefc

Markov property in video games

The simple solution retained in the original DQN paper is to stack the last four frames to form the state
representation.

Having the previous positions of the ball, the network can learn to infer its direction of movement.

27 / 55

DQN code in Keras
Creating the CNN in keras / tensorflow / pytorch is straightforward:

model = Sequential()

model.add(Input((4, 84, 84)))

model.add(Conv2D(16, (8, 8), strides=(4, 4)), activation='relu'))

model.add(Conv2D(32, (4, 4), strides=(2, 2), activation='relu'))

model.add(Flatten())

model.add(Dense(256, activation='relu'))

model.add(Dense(nb_actions, activation='linear'))

optimizer = RMSprop(lr=0.00025, rho=0.95, epsilon=0.01)

model.compile(optimizer, loss='mse')

https://becominghuman.ai/lets-build-an-atari-ai-part-1-dqn-df57e8ff3b26 28 / 55

https://becominghuman.ai/lets-build-an-atari-ai-part-1-dqn-df57e8ff3b26

DQN code in Keras
Each step of the algorithm follows the GPI approach:

def q_iteration(env, model, state, memory):

 # Choose the action with epsilon-greedy
 if np.random.random() < epsilon:
 action = env.action_space.sample()
 else:
 # Predict the Q-values for the current state and take the greedy action
 values = model.predict([state])[0]
 action = values.argmax()

 # Play one game iteration
 new_state, reward, terminal, truncated, info = env.step(action)

 # Append the transition to the replay buffer
 memory.add(state, action, new_state, reward, terminal or truncated)

 # Sample a minibatch from the memory and fit the DQN
 s, a, r, s_, t = memory.sample_batch(32)
 fit_batch(model, s, a, r, s_, t)

https://becominghuman.ai/lets-build-an-atari-ai-part-1-dqn-df57e8ff3b26 29 / 55

https://becominghuman.ai/lets-build-an-atari-ai-part-1-dqn-df57e8ff3b26

DQN code in Keras
The only slight difficulty is actually to compute the targets for learning:

def fit_batch(model, states, actions, rewards, next_states, terminals)

 # Predict the Q-values in the current state
 Q_values = model.predict(states)

 # Predict the Q-values in the next state using the target model
 next_Q_value = target_model.predict(next_states).max(axis=1)

 # Terminal states have a value of 0
 next_Q_value[terminals] = 0.0

 # Compute the target
 targets = Q_values.copy()
 for i in range(batch_size):
 targets[i, actions[i]] = rewards[i] + self.gamma * next_Q_value[i]

 # Train the model on the minibatch
 self.model.fit(states, targets, epochs=1, batch_size=batch_size, verbose=0)

https://becominghuman.ai/lets-build-an-atari-ai-part-1-dqn-df57e8ff3b26 30 / 55

https://becominghuman.ai/lets-build-an-atari-ai-part-1-dqn-df57e8ff3b26

DQN training
50M frames (38 days of game experience) per game. Replay buffer of 1M frames.

Action selection: -greedy with and annealing. Optimizer: RMSprop with a batch size of 32.ϵ ϵ = 0.1

Mnih et al. (2015). Human-level control through deep reinforcement learning. Nature 518, 529–533. doi:10.1038/nature14236. 31 / 55

DQN to solve multiple Atari games

DQN BreakoutDQN Breakout
ShareShare

32 / 55

https://www.youtube.com/watch?v=TmPfTpjtdgg

DQN to solve multiple Atari games

DQN SPACE INVADERSDQN SPACE INVADERS
ShareShare

33 / 55

https://www.youtube.com/watch?v=W2CAghUiofY

DQN to solve multiple Atari games
The DQN network was trained to solve 49 different Atari
2600 games with the same architecture and
hyperparameters.

In most of the games, the network reaches super-human
performance.

Some games are still badly performed
(e.g. Montezuma’s revenge), as they require long-term
planning.

It was the first RL algorithm able to learn different tasks
(no free lunch theorem).

The 2015 paper in Nature started the hype for deep RL.

Mnih et al. (2015). Human-level control through deep reinforcement learning. Nature 518, 529–533. doi:10.1038/nature14236. 34 / 55

2 - Double DQN

van Hasselt, Guez and Silver (2015). Deep Reinforcement Learning with Double Q-learning, arXiv:1509.06461. 35 / 55

Double DQN
Q-learning methods, including DQN, tend to overestimate Q-values, especially for the non-greedy actions:

This does not matter much in action selection, as we apply -greedy or softmax on the Q-values anyway,
but it may make learning slower (sample complexity) and less optimal.

Q (s, a) >θ Q (s, a)π

ϵ

van Hasselt, Guez and Silver (2015). Deep Reinforcement Learning with Double Q-learning, arXiv:1509.06461. 36 / 55

Double DQN
To avoid optimistic estimations, the target is computed by both the value network and the target
network :

Action selection: The next greedy action is calculated by the value network (current policy):

Action evaluation: Its Q-value for the target is calculated using the target network (older values):

This gives the following loss function for double DQN (DDQN):

θ

θ′

a∗ θ

a =∗ argmax Q (s , a)a′ θ
′ ′

θ′

t = r + γ Q (s´, a)θ′
∗

L(θ) = E [(r +D γ Q (s´, argmax Q (s , a)) −θ′ a′ θ
′ ′ Q (s, a))]θ

2

van Hasselt, Guez and Silver (2015). Deep Reinforcement Learning with Double Q-learning, arXiv:1509.06461. 37 / 55

van Hasselt, Guez and Silver (2015). Deep Reinforcement Learning with Double Q-learning, arXiv:1509.06461. 38 / 55

3 - Prioritized Experience Replay

Schaul et al. (2015). Prioritized Experience Replay. arXiv:1511.05952 39 / 55

Prioritized Experience Replay

Source:

The experience replay memory or replay buffer is used to store the last 1M transitions .

The learning algorithm randomly samples a minibatch of size to update its parameters.

Not all transitions are interesting:

Some transitions were generated by a very old policy, the current policy won’t take them anymore.

Some transitions are already well predicted: the TD error is small, there is nothing to learn from.

https://parksurk.github.io/deep/reinfocement/learning/drlnd_2-4_value_based_methods-post/

(s, a, r, s)′

K

δ =t r +t+1 γ Q (s , a) −
a′

max θ t+1 t+1 Q (s , a) ≈θ t t 0

40 / 55

https://parksurk.github.io/deep/reinfocement/learning/drlnd_2-4_value_based_methods-post/

Prioritized Experience Replay

Source:

The experience replay memory makes learning very slow: we need a lot of samples to learn something
useful:

High sample complexity.

We need a smart mechanism to preferentially pick the transitions that will boost learning the most,
without introducing a bias.

Prioritized sweeping is actually a quite old idea:

https://parksurk.github.io/deep/reinfocement/learning/drlnd_2-4_value_based_methods-post/

Moore and Atkeson (1993). Prioritized sweeping: Reinforcement learning with less data and less
time. Machine Learning, 13(1):103–130.

41 / 55

https://parksurk.github.io/deep/reinfocement/learning/drlnd_2-4_value_based_methods-post/

Prioritized Experience Replay
The idea of prioritized experience replay (PER) is to sample in priority those transitions whose TD error is
the highest:

In practice, we insert the transition into the replay buffer.

To create a minibatch, the sampling algorithm select a transition based on the probability:

 is a small parameter ensuring that transition with no TD error still get sampled from time to time.

 allows to change the behavior from uniform sampling (, as in DQN) to fully prioritized sampling (
). should be annealed from 0 to 1 during training.

Think of it as a “kind of” softmax over the TD errors.

After the samples have been used for learning, their TD error is updated in the PER.

δ =t r +t+1 γ Q (s , a) −
a′

max θ t+1 t+1 Q (s , a)θ t t

(s, a, r, s , δ)′

k

P (k) =

 (∣δ ∣ + ϵ)∑k k
α

(∣δ ∣ + ϵ)k
α

ϵ

α α = 0
α = 1 α

δ

Schaul et al. (2015). Prioritized Experience Replay. arXiv:1511.05952 42 / 55

Prioritized Experience Replay
The main drawback is that inserting and sampling can be computationally expensive if we simply sort the
transitions based on :

Insertion: .

Sampling: .

Source:

(∣δ ∣ +k ϵ)α

O(N logN)

O(N)

https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/

43 / 55

https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/

Prioritized Experience Replay
Using binary sumtrees, prioritized experience replay can be made efficient in both insertion ()
and sampling ().

Instead of a linear queue, we use a binary tree to store the transitions.

Details in a real computer science course…

Source:

O(logN)
O(1)

https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-
58b130cc5682/

44 / 55

https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/

Prioritized Experience Replay

Schaul et al. (2015). Prioritized Experience Replay. arXiv:1511.05952 45 / 55

Prioritized Experience Replay

Schaul et al. (2015). Prioritized Experience Replay. arXiv:1511.05952 46 / 55

4 - Dueling networks

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., and de Freitas, N. (2016). Dueling Network Architectures for Deep Reinforcement Learning. arXiv:1511.06581. 47 / 55

Dueling networks
DQN and its variants learn to predict directly the Q-value of each available action.

Several problems with predicting Q-values with a DNN:

The Q-values can take high values, especially with different values of .

The Q-values have a high variance, between the minimum and maximum returns obtained during
training.

For a transition , a single Q-value is updated, not all actions in .

γ

(s , a , s)t t t+1 s t

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., and de Freitas, N. (2016). Dueling Network Architectures for Deep Reinforcement Learning. arXiv:1511.06581. 48 / 55

Dueling networks
Enduro game.

The exact Q-values of all actions are not equally important.

In bad states (low), you can do whatever you want, you will lose.

In neutral states, you can do whatever you want, nothing happens.

In good states (high), you need to select the right action to get rewards, otherwise you lose.

Source: https://gfycat.com/clumsypaleimpala

Good state
actions matter

Bad state
actions do not matter

V (s)π

V (s)π

49 / 55

https://gfycat.com/clumsypaleimpala

Advantage functions
An important notion is the advantage of
an action:

It tells how much return can be expected by taking
the action in the state , compared to what is
usually obtained in with the current policy.

If a policy is deterministic and always selects
in , we have:

This is particularly true for the optimal policy.

But if we have separate estimates and , some actions may have a positive advantage.

Advantages have less variance than Q-values.

Bad state

Good state

A (s, a)π

A (s, a) =π Q (s, a) −π V (s)π

a s

s

π a∗

s

A (s, a) =π ∗ 0

A (s, a =π a) <∗ 0

V (s)φ Q (s, a)θ

50 / 55

Dueling networks

In dueling networks, the network is forced to decompose the estimated Q-value into a state
value and an advantage function :

The parameters and are just two shared subparts of the NN .

The loss function

is exactly the same as in (D)DQN: only the internal structure of the NN changes.

Q (s, a)θ

V (s)α A (s, a)β

Q (s, a) =θ V (s) +α A (s, a)β

α β θ

L(θ) = E [(r +D γ Q (s´, argmax Q (s , a)) −θ′ a′ θ
′ ′ Q (s, a))]θ

2

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., and de Freitas, N. (2016). Dueling Network Architectures for Deep Reinforcement Learning. arXiv:1511.06581. 51 / 55

Unidentifiability
The Q-values are the sum of two functions:

However, the sum is unidentifiable:

To constrain the sum, (Wang et al. 2016) propose that the greedy action w.r.t the advantages should have
an advantage of 0:

This way, there is only one solution to the addition. The operation is differentiable, so backpropagation
will work.

(Wang et al. 2016) show that subtracting the mean advantage works better in practice:

Q (s, a) =θ V (s) +α A (s, a)β

Q (s, a) = 10θ = 1 + 9

= 2 + 8

= 3 + 7

Q (s, a) =θ V (s) +α (A (s, a) −β A (s, a))
a′

max β
′

Q (s, a) =θ V (s) +α (A (s, a) −β A (s, a))
∣A∣
1

a′

∑ β
′

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., and de Freitas, N. (2016). Dueling Network Architectures for Deep Reinforcement Learning. arXiv:1511.06581. 52 / 55

Visualization of the value and advantage functions
Which pixels change the most the value and advantage functions?

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., and de Freitas, N. (2016). Dueling Network Architectures for Deep Reinforcement Learning. arXiv:1511.06581. 53 / 55

Improvement over prioritized DDQN

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., and de Freitas, N. (2016). Dueling Network Architectures for Deep Reinforcement Learning. arXiv:1511.06581. 54 / 55

Summary of DQN
DQN and its early variants (double duelling DQN
with PER) are an example of value-based deep RL.

The value of each possible action in a
given state is approximated by a convolutional
neural network.

The NN has to minimize the mse between the
predicted Q-values and the target value
corresponding to the Bellman equation:

The use of an experience replay memory and of target networks allows to stabilize learning and avoid
suboptimal policies.

The main drawback of DQN is sample complexity: it needs huge amounts of experienced transitions to
find a correct policy. The sample complexity come from the deep network itself (gradient descent is
iterative and slow), but also from the ERM: it contains 1M transitions, most of which are outdated.

Only works for small and discrete action spaces (one output neuron per action).

Q (s, a)θ

L(θ) = E [(r +D γ Q (s´, argmax Q (s , a)) −θ′ a′ θ
′ ′ Q (s, a))]θ

2

55 / 55

