
Deep Reinforcement Learning
Beyond DQN

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1 / 54

1 - Distributional learning : Categorical DQN

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A Distributional Perspective on Reinforcement Learning. arXiv:1707.06887 2 / 54

Distributional learning
Until now, we have only cared about the expectation of the returns, i.e. their mean value:

We select actions with the highest expected return, which makes sense on the long term.

Suppose we have two actions and , which provide different returns with the same probability:

Their Q-value is the same: , so if you play them an infinity of times, they are both
optimal.

But suppose that, after learning, you can only try a single action. Which one do you chose?

RL does not distinguish safe from risky actions.

V (s) =π E [R ∣s =π t t s]

Q (s, a) =π E [R ∣s =π t t s, a =t a]

a 1 a 2

R(a) =1 {100, 200}

R(a) =2 {−100, 400}

Q(a) =1 Q(a) =2 150

3 / 54

Distributional learning
The trip by train from Leipzig to Chemnitz takes 1 hour if everything goes well.

Once a week on average, the train will get stuck on the way for 30 minutes.

The expected duration of the trip is 1h + 1/5*30 = 1h06.

But in practice it takes either 1h or 1h30, never 1h06.

If driving by car always takes 1h15, it might be worth it if you have an urgent appointment that day.

Leipzig Bad Lausick Geithain Chemnitz

Leipzig Bad Lausick Geithain

25 10 25

30 30 30

25 10 25
p = 1/5 p = 1/5 p = 1/5

4 / 54

Distributional learning
The idea of distributional RL is to learn the distribution of returns directly instead of its expectation:

Note that we can always obtain the Q-values back:

Zπ

R ∼t Z (s , a)π
t t

Q (s, a) =π E [Z (s, a)]π
π

5 / 54

Categorical DQN
In categorical DQN (Bellemare et al., 2017), we
model the distribution of returns as a discrete
probability distribution.

categorical or multinouilli distribution.

We first need to identify the minimum and
maximum returns and possible in the
problem.

We then split the range in discrete
bins centered on the atoms .

The probability that the return obtained the action lies in the bin of the atom is noted .

It can be approximated by a neural network with parameters , using a softmax output layer:

R min R max

[R ,R]min max n

{z } i i=1
n

(s, a) z i p (s, a)i

F θ

p (s, a; θ) =i

 expF (s, a; θ)∑j=1
n

j

expF (s, a; θ)i

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A Distributional Perspective on Reinforcement Learning. arXiv:1707.06887 6 / 54

Categorical DQN

The probabilities completely define the parameterized distribution .

where is a Dirac distribution centered on the atom .

The Q-value of an action can be obtained by:

n {p (s, a; θ)} i i=1
n Z (s, a)θ

Z (s, a) =θ p (s, a; θ) δ

a

∑ i z i

δ z i z i

Q (s, a) =θ E[Z (s, a)] =θ p (s, a; θ) z

i=1

∑
n

i i

7 / 54

Categorical DQN
The only thing we need is a neural network returning for each action in the
state a discrete probability distribution instead of a single Q-value

.

The NN uses a softmax activation function for each action.

Action selection is similar to DQN: we first compute the and apply
greedy / -greedy / softmax over the actions.

The number of atoms for each action should be big enough to represent the
range of returns.

A number that works well with Atari games is :

Categorical DQN is often noted C51.

Source:
https://physai.sciencesconf.org/data/pages/distributional_RL_Remi_Munos.pdf

θ a

s Z (s, a)θ

Q (s, a)θ

Q (s, a)θ

ϵ

Q (s, a) =θ p (s, a; θ) z

i=1

∑
n

i i

n

n = 51

8 / 54

https://physai.sciencesconf.org/data/pages/distributional_RL_Remi_Munos.pdf

Categorical DQN
How do we learn the distribution of returns of parameters ?

In Q-learning, we minimize the mse between the prediction and the target:

where is the Bellman operator.

We do the same here:

we apply the Bellman operator on the distribution .

we then minimize the statistical “distance” between the distributions and .

Z (s, a)θ {p (s, a; θ)} i i=1
n

Q (s, a)θ

T Q (s, a) =θ r + γ Q (s , a)θ
′ ′

T

 (T Q (s, a) −
θ

min θ Q (s, a))θ
2

Z (s, a)θ

T Z (s, a) =θ r(s, a) + γ Z (s , a)θ
′ ′

Z (s, a)θ T Z (s, a)θ

 KL(T Z (s, a)∣∣Z (s, a))
θ

min θ θ

9 / 54

Categorical DQN
Let’s note the return distribution of the greedy action in the next state .

Multiplying the returns by the discount factor shrinks the return distribution (its support gets
smaller).

The atoms of now have the position , but the probabilities stay the same.

Source:

P Zπ Z (s , a)θ
′ ′

γ < 1

z i Z (s , a)θ
′ ′ γ z i

https://physai.sciencesconf.org/data/pages/distributional_RL_Remi_Munos.pdf

10 / 54

https://physai.sciencesconf.org/data/pages/distributional_RL_Remi_Munos.pdf

Categorical DQN
Adding a reward translates the distribution. The new position of the atoms is:

The corresponding probabilities have not changed.

Source:

r

z =i
′ r + γ z i

https://physai.sciencesconf.org/data/pages/distributional_RL_Remi_Munos.pdf

11 / 54

https://physai.sciencesconf.org/data/pages/distributional_RL_Remi_Munos.pdf

Categorical DQN
But now we have a problem: the atoms of do not match with the atoms of .

We need to interpolate the target distribution to compare it with the predicted distribution.

Source:

z i
′ T Z (s, a)θ z i Z (s, a)θ

https://physai.sciencesconf.org/data/pages/distributional_RL_Remi_Munos.pdf

12 / 54

https://physai.sciencesconf.org/data/pages/distributional_RL_Remi_Munos.pdf

Categorical DQN
We need to apply a projection so that the bins of are the same as the ones of .

The formula sounds complicated, but it is basically a linear interpolation:

Φ T Z (s, a)θ Z (s, a)θ

(Φ T Z (s, a)) =θ i [1 −
j=1

∑
n

] p (s , a ; θ)
Δz

∣[T z] − z ∣j R min

R max
i

0
1

j
′ ′

13 / 54

Categorical DQN

We now have two distributions and sharing the same support.

We now want to have the prediction close from the target .

These are probability distributions, not numbers, so we cannot use the mse.

We instead minimize the Kullback-Leibler (KL) divergence between the two distributions.

Z (s, a)θ Φ T Z (s, a)θ

Z (s, a)θ Φ T Z (s, a)θ

14 / 54

Kullback-Leibler (KL) divergence
Let’s consider a parameterized discrete distribution and a discrete target distribution .

The KL divergence between the two distributions is:

It can be rewritten as the sum of the cross-entropy and the entropy of :

As does not depend on , the gradient of the KL divergence w.r.t to is the same as the gradient of the
cross-entropy.

Minimizing the KL divergence is the same as minimizing the cross-entropy.

Neural networks with a softmax output layer and the cross-entropy loss function can do that.

X θ T

KL(T ∣∣X) =θ E [− log]t∼T
T

X θ

T

KL(X ∣∣T) =θ E [− log X +t∼T θ log T] = H(X ,T) −θ H(T)

T θ θ

∇ KL(X ∣∣T) =θ θ E [−∇ log X]t∼T θ θ

15 / 54

Cross-entropy
In supervised learning, the targets are fixed one-hot encoded vectors.

But it could be any target distribution, as long as and share the same support.

t

L(θ) = E [−t log y]D

t y

16 / 54

Reminder: DQN
Initialize value network and target network .

Initialize experience replay memory of maximal size .

for :

Select an action based on , observe and .

Store in the experience replay memory.

Every steps:

Sample a minibatch randomly from .

For each transition in the minibatch:

Compute the target value using the target network.

Update the value network on to minimize:

Every steps:

Update target network: .

Q θ Q θ′

D N

t ∈ [0,T]total

a t Q (s , a)θ t s t+1 r t+1

(s , a , r , s)t t t+1 t+1

T train

D s D

(s , a , r , s)k k k k
′

t =k r +k γ max Q (s , a)a′ θ′
k
′ ′

Q θ D s

L(θ) = E [(t −D s k Q (s , a))]θ k k
2

T target

θ ←′ θ

17 / 54

Categorical DQN
Initialize distributional value network and target network , experience replay memory .

Every steps:

Sample a minibatch randomly from .

For each transition in the minibatch:

Select the greedy action in the next state using the target network:

Apply the Bellman operator on the distribution of the next greedy action:

Project this distribution to the support of .

Update the value network on to minimize the cross-entropy:

Z θ Z θ′ D

T train

D s D

(s , a , r , s)k k k k
′

a =k
′ argmax E[Z (s , a)]a θ′ k

′

TZ =k r +k γ Z (s , a)θ′ k
′

k
′

Z (s , a)θ k k

t =k Projection(TZ ,Z (s , a))k θ k k

Q θ D s

L(θ) = E [−t logZ (s , a)]D s k θ k k

18 / 54

Categorical DQN

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A Distributional Perspective on Reinforcement Learning. arXiv:1707.06887 19 / 54

Categorical DQN

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A Distributional Perspective on Reinforcement Learning. arXiv:1707.06887 20 / 54

Categorical DQN
Having the full distribution of returns allow to deal with uncertainty.

For certain actions in critical states, one could get a high return (killing an enemy) or no return (death).

The distribution reflects that the agent is not certain of the goodness of the action. Expectations would
not provide this information.

Source: https://deepmind.com/blog/article/going-beyond-average-reinforcement-learning

21 / 54

https://deepmind.com/blog/article/going-beyond-average-reinforcement-learning

Categorical DQN

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A Distributional Perspective on Reinforcement Learning. arXiv:1707.06887 22 / 54

Categorical DQN

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A Distributional Perspective on Reinforcement Learning. arXiv:1707.06887 23 / 54

Categorical DQN

Learning Space Invaders Value DistributionsLearning Space Invaders Value Distributions
ShareShare

24 / 54

https://www.youtube.com/watch?v=yFBwyPuO2Vg

Categorical DQN

Learning Seaquest Value DistributionsLearning Seaquest Value Distributions
ShareShare

25 / 54

https://www.youtube.com/watch?v=d1yz4PNFUjI

Other variants of distributional learning
QR-DQN: Dabney, W., Rowland, M., Bellemare, M. G., and Munos, R. (2017). Distributional Reinforcement
Learning with Quantile Regression. arXiv:1710.10044

IQN: Dabney, W., Ostrovski, G., Silver, D., and Munos, R. (2018). Implicit Quantile Networks for
Distributional Reinforcement Learning. arXiv:1806.06923.

The Reactor: Gruslys, A., Dabney, W., Azar, M. G., Piot, B., Bellemare, M., and Munos, R. (2017). The
Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement Learning. arXiv:1704.04651.

26 / 54

2 - Noisy DQN

Fortunato et al. (2017). Noisy Networks for Exploration. arXiv:170610295 27 / 54

Noisy DQN
DQN and its variants rely on -greedy action selection over the Q-values to explore.

The exploration parameter is annealed during training to reach a final minimal value.

It is preferred to softmax action selection, where scales with the unknown Q-values.

The problem is that it is a global exploration mechanism: well-learned states do not need as much
exploration as poorly explored ones.

Source:

ϵ

ϵ

τ

https://www.researchgate.net/publication/334741451/figure/fig2/AS:786038515589120@1564417594220/Epsilon-greedy-method-At-each-step-
a-random-number-is-generated-by-the-model-If-the_W640.jpg

28 / 54

https://www.researchgate.net/publication/334741451/figure/fig2/AS:786038515589120@1564417594220/Epsilon-greedy-method-At-each-step-a-random-number-is-generated-by-the-model-If-the_W640.jpg

Noisy DQN
-greedy and softmax add exploratory noise to the

output of DQN:

The Q-values predict a greedy action, but
another action is taken.

What about adding noise to the parameters
(weights and biases) of the DQN, what would
change the greedy action everytime?

Controlling the level of noise inside the neural
network indirectly controls the exploration level.

Note: a very similar idea was proposed by OpenAI at the same ICLR conference:

ϵ

Source: https://openai.com/blog/better-exploration-with-parameter-noise/

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., et al. (2018). Parameter Space
Noise for Exploration. arXiv:1706.01905.

29 / 54

https://openai.com/blog/better-exploration-with-parameter-noise/

Noisy DQN
Parameter noise builds on the idea of Bayesian deep learning.

Instead of learning a single value of the parameters:

we learn the distribution of the parameters, for example by assuming they
come from a normal distribution:

For each new input, we sample a value for the parameter:

with a random variable.

The prediction will vary for the same input depending on the variances:

The mean and variance of each parameter can be learned through backpropagation!

y = θ x +1 θ 0

θ ∼ N (μ ,σ)θ θ
2

θ = μ +θ σ ϵθ

ϵ ∼ N (0, 1) Source: https://ericmjl.github.io/bayesian-
deep-learning-demystified

y

y = (μ +θ 1 σ ϵ)x +θ 1 1 μ +θ 0 σ ϵ θ 0 0

30 / 54

https://ericmjl.github.io/bayesian-deep-learning-demystified

Noisy DQN
Probabilistic weights:

As the random variables are not correlated with anything,
the variances should decay to 0.

The variances represent the uncertainty about the prediction .

Applied to DQN, this means that a state which has not been visited very
often will have a high uncertainty:

The predicted Q-values will change a lot between two evaluations.

The greedy action might change: exploration.

Conversely, a well-explored state will have a low uncertainty:

The greedy action stays the same: exploitation.

θ ∼ N (μ ,σ)θ θ
2

ϵ ∼i N (0, 1)
σ θ

2

σ θ
2 y

Source: https://ericmjl.github.io/bayesian-
deep-learning-demystified

31 / 54

https://ericmjl.github.io/bayesian-deep-learning-demystified

Noisy DQN
Noisy DQN uses greedy action selection over noisy Q-values.

The level of exploration is learned by the network on a per-state basis. No need for scheduling!

Parameter noise improves the performance of -greedy-based methods, including DQN, dueling DQN,
A3C, DDPG (see later), etc.

ϵ

Fortunato et al. (2017). Noisy Networks for Exploration. arXiv:170610295 32 / 54

3 - Rainbow network

Hessel et al. (2017). Rainbow: Combining Improvements in Deep Reinforcement Learning. arXiv:1710.02298 33 / 54

Raindow network
We have seen various improvements over a few years (2013-2017):

Original DQN (Mnih et al., 2013)

Double DQN (van Hasselt, Guez and Silver, 2015)

Prioritized Experience Replay (Schaul et al., 2015)

Dueling DQN (Wang et al., 2016)

Categorical DQN (Bellemare, Dabney and Munos,
2017)

NoisyNet (Fortunato et al., 2017)

Which of these improvements should we use?

L(θ) = E [(r +D γ Q (s´, argmax Q (s , a)) −θ′ a′ θ′
′ ′ Q (s, a))]θ

2

L(θ) = E [(r +D γ Q (s´, argmax Q (s , a)) −θ′ a′ θ
′ ′ Q (s, a))]θ

2

P (k) =

 (∣δ ∣ + ϵ)∑k k
α

(∣δ ∣ + ϵ)k
α

Q (s, a) =θ V (s) +α A (s, a)β

L(θ) = E [−t logZ (s , a)]D s k θ k k

θ = μ +θ σ ϵθ

34 / 54

Rainbow network
Answer: all of them.

The rainbow network combines :

double dueling DQN with PER.

categorical learning of return distributions.

parameter noise for exploration.

n-step return (n=3) for the bias/variance trade-
off:

It outperforms any of the single improvements.

R =t γ r +
k=0

∑
n−1

k
t+k+1 γ Q(s , a)n

a
max t+n

Hessel et al. (2017). Rainbow: Combining Improvements in Deep Reinforcement Learning. arXiv:1710.02298 35 / 54

Rainbow network
Most of these mechanisms are necessary to
achieve optimal performance (ablation studies).

n-step returns, PER and distributional learning are
the most critical.

Interestingly, double Q-learning does not have a
huge effect on the Rainbow network:

The other mechanisms (especially
distributional learning) already ensure that Q-
values are not over-estimated.

You can find good implementations of Rainbow
DQN on all major frameworks, for example on
rllib:

https://docs.ray.io/en/latest/rllib-
algorithms.html#deep-q-networks-dqn-rainbow-
parametric-dqn

Hessel et al. (2017). Rainbow: Combining Improvements in Deep Reinforcement Learning. arXiv:1710.02298 36 / 54

https://docs.ray.io/en/latest/rllib-algorithms.html#deep-q-networks-dqn-rainbow-parametric-dqn

4 - Gorila - General Reinforcement Learning Architecture

Nair et al. (2015). Massively Parallel Methods for Deep Reinforcement Learning. arXiv:1507.04296 37 / 54

Gorila
The DQN value network has
two jobs:

actor: it interacts with the
environment to sample
transitions.

learner: it learns from minibatches
out of the replay memory.

The weights of the value network lie on the same CPU/GPU, so the two jobs have to be done sequentially:
computational bottleneck.

DQN cannot benefit from parallel computing: multi-core CPU, clusters of CPU/GPU, etc.

Q (s, a)θ

(s, a, r, s)′

Nair et al. (2015). Massively Parallel Methods for Deep Reinforcement Learning. arXiv:1507.04296 38 / 54

Gorila
The Gorila framework splits DQN into multiple actors and multiple learners.

Each actor (or worker) interacts with its copy of the environment and stores transitions in a distributed
replay buffer.

Each learner samples minibatches from the replay buffer and computes gradients w.r.t the DQN loss.

The parameter server (master network) applies the gradients on the parameters and frequently
synchronizes the actors and learners.

Nair et al. (2015). Massively Parallel Methods for Deep Reinforcement Learning. arXiv:1507.04296 39 / 54

Gorila
Gorila allows to train DQN on parallel hardware (e.g. clusters of GPU) as long as the environment can be
copied (simulation).

The final performance is not incredibly better than
single-GPU DQN, but obtained much faster in wall-
clock time (2 days instead of 12-14 days on a
single GPU).

Nair et al. (2015). Massively Parallel Methods for Deep Reinforcement Learning. arXiv:1507.04296 40 / 54

Ape-X
With more experience, Deepmind realized that a single learner is better. Distributed SGD (computing
gradients with different learners) is not very efficient.

What matters is collecting transitions very quickly (multiple workers) but using prioritized experience
replay to learn from the most interesting ones.

Horgan et al. (2018). Distributed Prioritized Experience Replay. arXiv:180300933 41 / 54

Ape-X
Using 360 workers (1 per CPU core), Ape-X reaches super-human performance for a fraction of the wall-
clock training time.

Horgan et al. (2018). Distributed Prioritized Experience Replay. arXiv:180300933 42 / 54

Ape-X
The multiple parallel workers can collect much more frames, leading to the better performance.

The learner uses n-step returns and the double dueling DQN network architecture, so it is not much
different from Rainbow DQN internally.

Horgan et al. (2018). Distributed Prioritized Experience Replay. arXiv:180300933 43 / 54

5 - DRQN: Deep Recurrent Q-network

Hausknecht, M., and Stone, P. (2015). Deep Recurrent Q-Learning for Partially Observable MDPs. arXiv:1507.06527 44 / 54

DRQN: Deep Recurrent Q-network
Atari games are POMDP: each frame is a partial observation, not a Markov state.

One cannot infer the velocity of the ball from a single frame.

Hausknecht, M., and Stone, P. (2015). Deep Recurrent Q-Learning for Partially Observable MDPs. arXiv:1507.06527 45 / 54

DRQN: Deep Recurrent Q-network

The trick used by DQN and its variants is to stack
the last four frames and provide them as inputs to
the CNN.

The last 4 frames have (almost) the Markov
property.

Source: https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-6-partial-observability-and-deep-recurrent-q-
68463e9aeefc

46 / 54

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-6-partial-observability-and-deep-recurrent-q-68463e9aeefc

DRQN: Deep Recurrent Q-network

The alternative is to use a recurrent neural network
(e.g. LSTM) to encode the history of single frames.

The output at time depends on the whole history of inputs
.

Using the output of a LSTM as a state, we make sure that we have the Markov property, RL will work:

Source: https://medium.com/emergent-future/simple-
reinforcement-learning-with-tensorflow-part-6-partial-
observability-and-deep-recurrent-q-68463e9aeefc

h =t f(W ×x x +t W ×h h +t−1 b)

t

(x ,x , … ,x)0 1 t

P (h ∣h) =t+1 t P (h ∣h ,h , … ,h)t+1 t t−1 0

47 / 54

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-6-partial-observability-and-deep-recurrent-q-68463e9aeefc

DRQN: Deep Recurrent Q-network

Source:

For the neural network, it is just a matter of adding a LSTM layer before the output layer.

The convolutional layers are feature extractors for the LSTM layer.

The loss function does not change: backpropagation (through time) all along.

https://blog.acolyer.org/2016/11/23/playing-fps-games-with-deep-reinforcement-learning/

L(θ) = E [(r +D γ Q (s´, argmax Q (s , a)) −θ′ a′ θ
′ ′ Q (s, a))]θ

2

48 / 54

https://blog.acolyer.org/2016/11/23/playing-fps-games-with-deep-reinforcement-learning/

DRQN: Deep Recurrent Q-network

Hausknecht, M., and Stone, P. (2015). Deep Recurrent Q-Learning for Partially Observable MDPs. arXiv:1507.06527 49 / 54

DRQN: Deep Recurrent Q-network

The only problem is that RNNs are trained using truncated backpropagation through time (BPTT).

One needs to provide a partial history of inputs to the network in order to learn one output:

The experience replay memory should not contain single transitions , but a partial
history of transitions.

T = 10

(x ,x , … ,x)t−T t−T+1 t

(s , a , r , s)t t t+1 t+1

(s , a , r , s , … , s , a , r , s)t−T t−T t−T+1 t−T+1 t t t+1 t+1

50 / 54

DRQN: Deep Recurrent Q-network
Using a LSTM layer helps on certain games, where temporal dependencies are longer that 4 frames, but
impairs on others.

Hausknecht, M., and Stone, P. (2015). Deep Recurrent Q-Learning for Partially Observable MDPs. arXiv:1507.06527 51 / 54

DRQN: Deep Recurrent Q-network
Beware: LSTMs are extremely slow to train (but not to use).

Stacking frames is still a reasonable option.

Hausknecht, M., and Stone, P. (2015). Deep Recurrent Q-Learning for Partially Observable MDPs. arXiv:1507.06527 52 / 54

6 - R2D2: Recurrent Replay Distributed DQN

Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., and Dabney, W. (2019). Recurrent experience replay in distributed reinforcement learning. ICLR. 53 / 54

R2D2: Recurrent Replay Distributed DQN
R2D2 builds on Ape-X and DRQN:

double dueling DQN with n-step returns (n=5) and prioritized experience replay.

256 actors, 1 learner.

1 LSTM layer after the convolutional stack.

Additionally solving practical problems with LSTMs (initial state), it became the state of the art on Atari-
57 until November 2019…

Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., and Dabney, W. (2019). Recurrent experience replay in distributed reinforcement learning. ICLR. 54 / 54

