
Deep Reinforcement Learning
Policy gradient

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1 / 30

1 - Policy Search

2 / 30

Policy search

Learning directly the Q-values in value-based methods (DQN) suffers from many problems:

The Q-values are unbounded: they can take any value (positive or negative), so the output layer must
be linear.

The Q-values have a high variability: some pairs have very negative values, others have very
positive values. Difficult to learn for a NN.

Works only for small discrete action spaces: need to iterate over all actions to find the greedy action.

Good state
actions matter

Bad state
actions do not matter

(s, a)

3 / 30

Policy search

Instead of learning the Q-values, one could approximate directly the policy with a neural network.

 is called a parameterized policy: it depends directly on the parameters of the NN.

For discrete action spaces, the output of the NN can be a softmax layer, directly giving the probability of
selecting an action.

For continuous action spaces, the output layer can directly control the effector (joint angles).

π (s, a)θ

π (s, a)θ θ

4 / 30

Policy search
Parameterized policies can represent continuous policies and avoid the curse of dimensionality.

Source: https://www.freecodecamp.org/news/an-introduction-to-policy-gradients-with-cartpole-and-doom-495b5ef2207f/

5 / 30

https://www.freecodecamp.org/news/an-introduction-to-policy-gradients-with-cartpole-and-doom-495b5ef2207f/

Policy search

Trajectories
generated by

Any other possible trajectory

Rewards

Policy search methods aim at maximizing directly the expected return over all possible trajectories
(episodes)

All trajectories selected by the policy should be associated with a high expected return in
order to maximize this objective function.

 is the likelihood of the trajectory under the policy .

This means that the optimal policy should only select actions that maximizes the expected return: exactly
what we want.

τ = (s , a , … , s , a)0 0 T T

J (θ) = E [R(τ)] =τ∼ρ θ
 ρ (τ) R(τ) dτ∫

τ
θ

τ π θ R(τ)

ρ (τ)θ τ π θ

6 / 30

Policy search
Objective function to be maximized:

The objective function is however not model-free, as the likelihood of a trajectory does depend on the
environments dynamics:

The objective function is furthermore not computable:

An infinity of possible trajectories to integrate if the action space is continuous.

Even if we sample trajectories, we would need a huge number of them to correctly estimate the
objective function (sample complexity) because of the huge variance of the returns.

J (θ) = E [R(τ)] =τ∼ρ θ
 ρ (τ) R(τ) dτ∫

τ
θ

ρ (τ) =θ p (s , a , … , s , a) =θ 0 0 T T p (s) π (s , a) p(s ∣s , a)0 0
t=0

∏
T

θ t t t+1 t t

J (θ) = E [R(τ)] ≈τ∼ρ θ R(τ)
M

1

i=1

∑
M

i

7 / 30

Policy gradient
All we need to find is a computable gradient

 to apply gradient ascent and
backpropagation.

Policy Gradient (PG) methods only try to estimate
this gradient, but do not care about the objective
function itself…

In particular, any function whose gradient is locally the same (or has the same direction) will do:

This is called surrogate optimization: we actually want to maximize but we cannot compute it.

We instead create a surrogate objective which is locally the same as and tractable.

∇ J (θ)θ

Δθ = η ∇ J (θ)θ

g = ∇ J (θ)θ Source: https://www.freecodecamp.org/news/an-introduction-to-policy-
gradients-with-cartpole-and-doom-495b5ef2207f/

J (θ)′

J (θ) =′ αJ (θ) + β ⇒ ∇ J (θ) ∝θ
′ ∇ J (θ) ⇒θ Δθ = η ∇ J (θ)θ

′

J (θ)

J (θ)′ J (θ)

8 / 30

https://www.freecodecamp.org/news/an-introduction-to-policy-gradients-with-cartpole-and-doom-495b5ef2207f/

2 - REINFORCE

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning 8, 229–256. 9 / 30

REINFORCE
The REINFORCE algorithm (Williams, 1992) proposes an unbiased estimate of the policy gradient:

by noting that the return of a trajectory does not depend on the weights (the agent only controls its
actions, not the environment).

We now use the log-trick, a simple identity based on the fact that:

or:

to rewrite the gradient of the likelihood of a single trajectory:

∇ J (θ) =θ ∇ ρ (τ)R(τ) dτ =θ ∫
τ

θ (∇ ρ (τ))R(τ) dτ∫
τ

θ θ

θ

 =
dx

d log f(x)

f(x)
f (x)′

f (x) =′ f(x) ×

dx

d log f(x)

∇ ρ (τ) =θ θ ρ (τ) ×θ ∇ log ρ (τ)θ θ

10 / 30

REINFORCE
The policy gradient becomes:

which now has the form of a mathematical expectation:

The policy gradient is, in expectation, the gradient of the log-likelihood of a trajectory multiplied by its
return.

∇ J (θ) =θ (∇ ρ (τ))R(τ) dτ =∫
τ

θ θ ρ (τ) ∇ log ρ (τ)R(τ) dτ∫
τ

θ θ θ

∇ J (θ) =θ E [∇ log ρ (τ)R(τ)]τ∼ρ θ θ θ

11 / 30

REINFORCE
The advantage of REINFORCE is that it is model-free:

The transition dynamics disappear from the gradient.

The Policy Gradient does not depend on the dynamics of the environment:

ρ (τ) =θ p (s , a , … , s , a) =θ 0 0 T T p (s) π (s , a)p(s ∣s , a)0 0
t=0

∏
T

θ t t t+1 t t

log ρ (τ) =θ log p (s) +0 0 log π (s , a) +
t=0

∑
T

θ t t log p(s ∣s , a)
t=0

∑
T

t+1 t t

∇ log ρ (τ) =θ θ ∇ log π (s , a)
t=0

∑
T

θ θ t t

p(s ∣s , a)t+1 t t

∇ J (θ) =θ E [∇ log π (s , a)R(τ)]τ∼ρ θ

t=0

∑
T

θ θ t t

12 / 30

REINFORCE algorithm
The REINFORCE algorithm is a policy-based variant of Monte-Carlo control:

while not converged:

Sample trajectories using the current policy and observe the returns .

Estimate the policy gradient as an average over the trajectories:

Update the policy using gradient ascent:

M {τ }i π θ {R(τ)}i

∇ J (θ) ≈θ ∇ log π (s , a)R(τ)
M

1

i=1

∑
M

t=0

∑
T

θ θ t t i

θ ← θ + η ∇ J (θ)θ

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning 8, 229–256. 13 / 30

REINFORCE

Advantages

The policy gradient is model-free.

Works with partially observable problems (POMDP): as the return is computed over complete trajectories,
it does not matter whether the states are Markov or not.

Inconvenients

Only for episodic tasks.

The gradient has a high variance: returns may change a lot during learning.

It has therefore a high sample complexity: we need to sample many episodes to correctly estimate the
policy gradient.

Strictly on-policy: trajectories must be frequently sampled and immediately used to update the policy.

∇ J (θ) =θ E [∇ log π (s , a)R(τ)]τ∼ρ θ

t=0

∑
T

θ θ t t

14 / 30

REINFORCE with baseline
To reduce the variance of the estimated gradient, a baseline is often subtracted from the return:

As long as the baseline is independent from , it does not introduce a bias:

∇ J (θ) =θ E [∇ log π (s , a) (R(τ) −τ∼ρ θ

t=0

∑
T

θ θ t t b)]

b θ

E [∇ log ρ (τ) b]τ∼ρ θ θ θ = ρ (τ)∇ log ρ (τ) b dτ∫
τ

θ θ θ

= ∇ ρ (τ) b dτ∫
τ

θ θ

= b∇ ρ (τ) dτθ ∫
τ

θ

= b∇ 1θ
= 0

15 / 30

REINFORCE with baseline
In practice, a baseline that works well is the value of the encountered states:

 becomes the advantage of the action in : how much return does it provide
compared to what can be expected in generally:

As in dueling networks, it reduces the variance of the returns.

Problem: the value of each state has to be learned separately (see actor-critic architectures).

∇ J (θ) =θ E [∇ log π (s , a) (R(τ) −τ∼ρ θ

t=0

∑
T

θ θ t t V (s))]π
t

R(τ) − V (s)π
t a t s t

s t

Good state
actions matter

Bad state
actions do not matter

Bad state

Good state

16 / 30

Application of REINFORCE to resource management
REINFORCE with baseline can be used to allocate
resources (CPU cores, memory, etc) when
scheduling jobs on a cloud of compute servers.

The policy is approximated by a shallow NN (one
hidden layer with 20 neurons).

The state space is the current occupancy of the
cluster as well as the job waiting list.

The action space is sending a job to a particular
resource.

The reward is the negative job slowdown: how
much longer the job needs to complete compared
to the optimal case.

DeepRM outperforms all alternative job schedulers.

Mao, H., Alizadeh, M., Menache, I., and Kandula, S. (2016). Resource Management with Deep Reinforcement Learning. HotNets ’16 doi:10.1145/3005745.3005750. 17 / 30

3 - Policy Gradient Theorem

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient methods for reinforcement learning with function approximation. NIPS. 18 / 30

Policy Gradient
The REINFORCE gradient estimate is the following:

For each state-action pair encountered during the episode, the gradient of the log-policy is
multiplied by the complete return of the episode:

The causality principle states that rewards obtained before time are not caused by that action.

The policy gradient can be rewritten as:

∇ J (θ) =θ E [∇ log π (s , a)R(τ)] =τ∼ρ θ

t=0

∑
T

θ θ t t E [(∇ log π (s , a)) (γ r)]τ∼ρ θ

t=0

∑
T

θ θ t t

t =0′

∑
T

t′

t +1′

(s , a)t t

R(τ) = γ r

t =0′

∑
T

t′

t +1′

t

∇ J (θ) =θ E [∇ log π (s , a) (γ r)] =τ∼ρ θ

t=0

∑
T

θ θ t t

t =t′

∑
T

t −t′

t +1′ E [∇ log π (s , a)R]τ∼ρ θ

t=0

∑
T

θ θ t t t

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient methods for reinforcement learning with function approximation. NIPS. 19 / 30

Policy Gradient
The return at time (reward-to-go) multiplies the gradient of
the log-likelihood of the policy (the score) for each transition
in the episode:

As we have:

we can replace with without introducing any
bias:

This is true on average (no bias if the Q-value estimates are correct) and has a much lower variance!

t

∇ J (θ) =θ E [∇ log π (s , a)R]τ∼ρ θ

t=0

∑
T

θ θ t t t

Q (s, a) =π E [R ∣s =π t t s; a =t a]

R t Q (s , a)π θ
t t

∇ J (θ) =θ E [∇ log π (s , a)Q (s , a)]τ∼ρ θ

t=0

∑
T

θ θ t t
π θ

t t

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient methods for reinforcement learning with function approximation. NIPS. 20 / 30

Policy Gradient
The policy gradient is defined over complete trajectories:

However, now only depends on , not the future nor the past.

Each step of the episode is now independent from each other (if we have the Markov property).

We can then sample single transitions instead of complete episodes:

Note that this is not directly the gradient of , as the value of changes (computed over single
transitions instead of complete episodes, so it is smaller), but the gradients both go in the same direction!

∇ J (θ) =θ E [∇ log π (s , a)Q (s , a)]τ∼ρ θ

t=0

∑
T

θ θ t t
π θ

t t

∇ log π (s , a)Q (s , a)θ θ t t
π θ

t t (s , a)t t

∇ J (θ) ∝θ E [∇ log π (s, a)Q (s, a)]s∼ρ ,a∼π θ θ θ θ
π θ

J (θ) J (θ)

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient methods for reinforcement learning with function approximation. NIPS. 21 / 30

Policy Gradient Theorem

For any MDP, the policy gradient is:

g = ∇ J (θ) =θ E [∇ log π (s, a)Q (s, a)]s∼ρ ,a∼π θ θ θ θ
π θ

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient methods for reinforcement learning with function approximation. NIPS. 22 / 30

Policy Gradient Theorem with function approximation
Better yet, (Sutton et al. 1999) showed that we can replace the true Q-value by an estimate

 as long as this one is unbiased:

We only need to have:

The approximated Q-values can for example minimize the mean square error with the true Q-values:

We obtain an actor-critic architecture:

the actor implements the policy and
selects an action in a state .

the critic estimates the value of that
action and drives learning in the actor.

Q (s, a)π θ

Q (s, a)φ

∇ J (θ) =θ E [∇ log π (s, a)Q (s, a)]s∼ρ ,a∼π θ θ θ θ φ

Q (s, a) ≈φ Q (s, a) ∀s, aπ θ

L(φ) = E [(Q (s, a) −s∼ρ ,a∼π θ θ

π θ Q (s, a))]φ
2

π (s, a)θ

a s

Q (s, a)φ

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient methods for reinforcement learning with function approximation. NIPS. 23 / 30

Function approximators to learn the Q-values
There are two possibilities to approximate Q-values :

The DNN approximates the Q-value of a single
 pair.

The action space can be continuous.

The DNN approximates the Q-value of all actions
in a state .

The action space must be discrete (one neuron per
action).

Q (s, a)θ

(s, a)
a

s

Source: https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677 24 / 30

https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677

Policy Gradient : Actor-critic

Critic

Actor

25 / 30

Policy Gradient : Actor-critic

Critic

Actor

But how to train the critic? We do not know . As always, we can estimate it through sampling:

Monte-Carlo critic: sampling the complete episode.

SARSA critic: sampling transitions.

Q-learning critic: sampling transitions.

Q (s, a)π θ

L(φ) = E [(R(s, a) −s∼ρ ,a∼π θ θ
Q (s, a))]φ

2

(s, a, r, s , a)′ ′

L(φ) = E [(r +s,s ∼ρ ,a,a ∼π

′
θ

′
θ

γ Q (s , a) −φ
′ ′ Q (s, a))]φ

2

(s, a, r, s)′

L(φ) = E [(r +s,s ∼ρ ,a∼π

′
θ θ

γ Q (s , a) −
a′

max φ
′ ′ Q (s, a))]φ

2

26 / 30

Policy Gradient : Actor-critic

Critic

Actor

The policy gradient (PG) theorem implies an actor-critic architecture.

The actor learns using the PG theorem:

The critic learns using Q-learning:

∇ J (θ) =θ E [∇ log π (s, a)Q (s, a)]s∼ρ ,a∼π θ θ θ θ φ

L(φ) = E [(r +s,s ∼ρ ,a∼π

′
θ θ γ Q (s , a) −

a′
max φ

′ ′ Q (s, a))]φ
2

27 / 30

Policy Gradient : reducing the variance
As with REINFORCE, the PG actor suffers from the high variance of the Q-values.

It is possible to use a baseline in the PG without introducing a bias:

In particular, the advantage actor-critic uses the value of a state as the baseline:

The critic can either:

learn to approximate both and with two different NN (SAC).

replace one of them with a sampling estimate (A3C, DDPG)

learn the advantage directly (GAE, PPO)

∇ J (θ) =θ E [∇ log π (s, a) (Q (s, a) −s∼ρ ,a∼πθ θ θ θ
π θ b)]

∇ J (θ)θ = E [∇ log π (s, a) (Q (s, a) − V (s))]s∼ρ ,a∼π θ θ θ θ
π θ π θ

= E [∇ log π (s, a)A (s, a)]s∼ρ ,a∼π θ θ θ θ
π θ

Q (s, a)π θ V (s)π θ

A (s, a)π θ

28 / 30

Many variants of the Policy Gradient
Policy Gradient methods can take many forms :

where:

 is the REINFORCE algorithm (MC sampling).

 is the REINFORCE with baseline algorithm.

 is the policy gradient theorem.

 is the advantage actor-critic.

 is the TD actor-critic.

 is the n-step advantage.

and many others…

∇ J(θ) =θ E [∇ log π (s , a)ψ]s ∼ρ ,a ∼π t θ t θ θ θ t t t

ψ =t R t

ψ =t R −t b

ψ =t Q (s , a)π
t t

ψ =t A (s , a) =π
t t Q (s , a) −π

t t V (s)π
t

ψ =t r +t+1 γ V (s) −π
t+1 V (s)π

t

ψ =t γ r +
k=0

∑
n−1

k
t+k+1 γ V (s) −n π

t+n V (s)π
t

29 / 30

Bias and variance of Policy Gradient methods
The different variants of PG deal with the bias/variance trade-off.

1. the more relies on sampled rewards (e.g.), the more the
gradient will be correct on average (small bias), but the more it
will vary (high variance).

This increases the sample complexity: we need to average
more samples to correctly estimate the gradient.

2. the more relies on estimations (e.g. the TD error), the more
stable the gradient (small variance), but the more incorrect it
is (high bias).

This can lead to suboptimal policies, i.e. local optima of
the objective function.

All the methods we will see in the rest of the course are attempts at finding the best trade-off.

∇ J(θ) =θ E [∇ log π (s , a)ψ]s ∼ρ ,a ∼π t θ t θ θ θ t t t

ψ t R t

ψ t

30 / 30

