

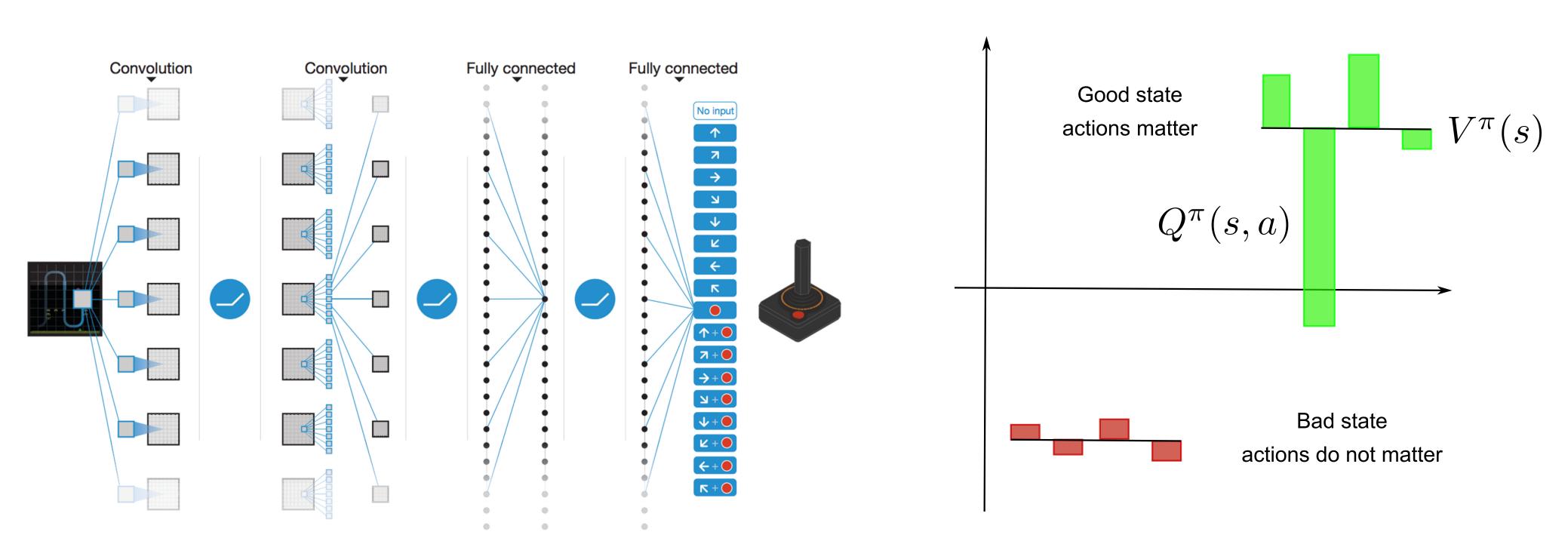
Deep Reinforcement Learning

Policy gradient

Julien Vitay Professur für Künstliche Intelligenz - Fakultät für Informatik

1 - Policy Search

 \equiv



- Learning directly the Q-values in value-based methods (DQN) suffers from many problems:
 - be linear.
 - positive values. Difficult to learn for a NN.

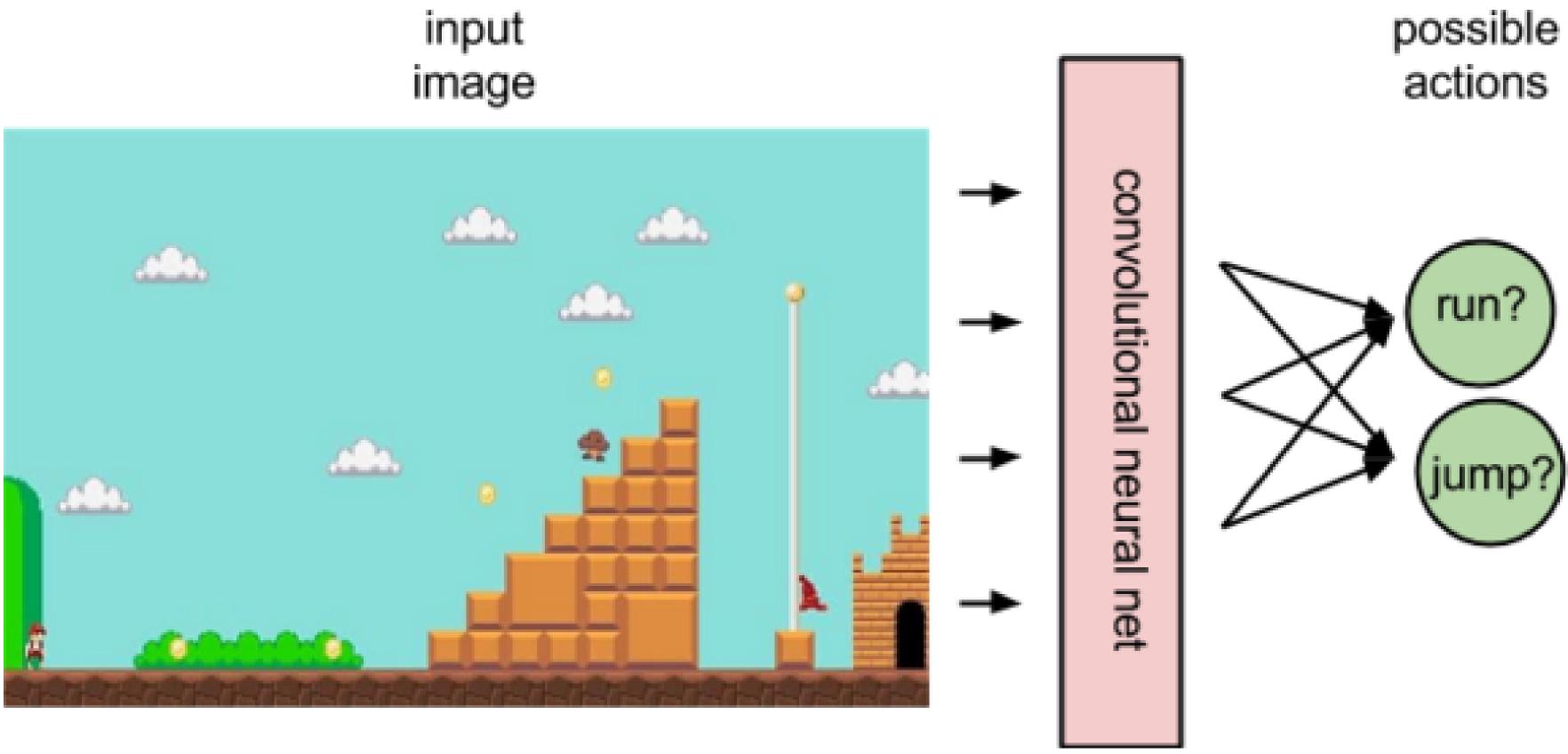
• The Q-values are **unbounded**: they can take any value (positive or negative), so the output layer must

• The Q-values have a high variability: some (s, a) pairs have very negative values, others have very

• Works only for small **discrete action spaces**: need to iterate over all actions to find the greedy action.

 \equiv

input

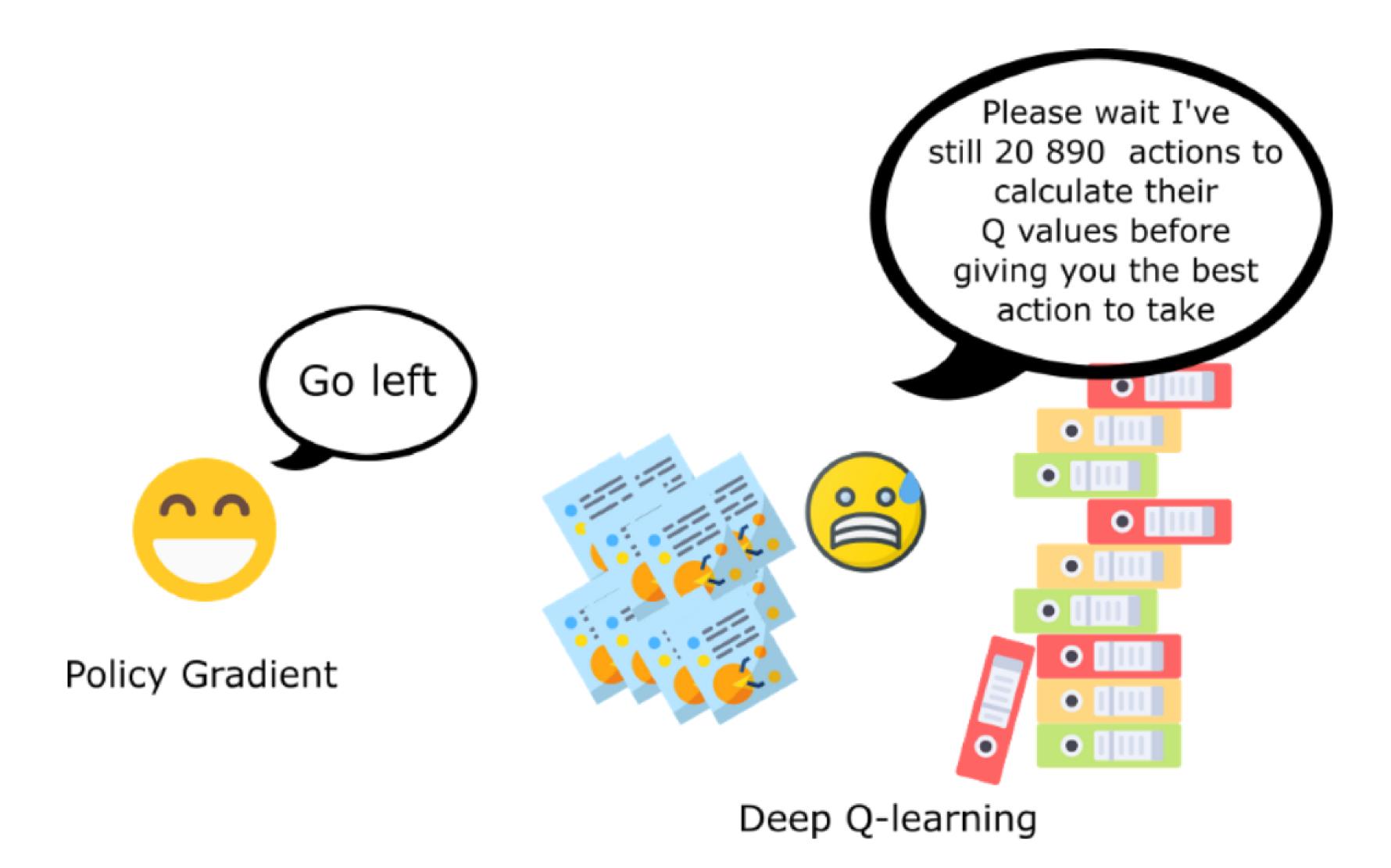


- $\pi_{\theta}(s, a)$ is called a **parameterized policy**: it depends directly on the parameters θ of the NN.
- For discrete action spaces, the output of the NN can be a softmax layer, directly giving the probability of selecting an action.
- For continuous action spaces, the output layer can directly control the effector (joint angles).

• Instead of learning the Q-values, one could approximate directly the policy $\pi_{\theta}(s, a)$ with a neural network.

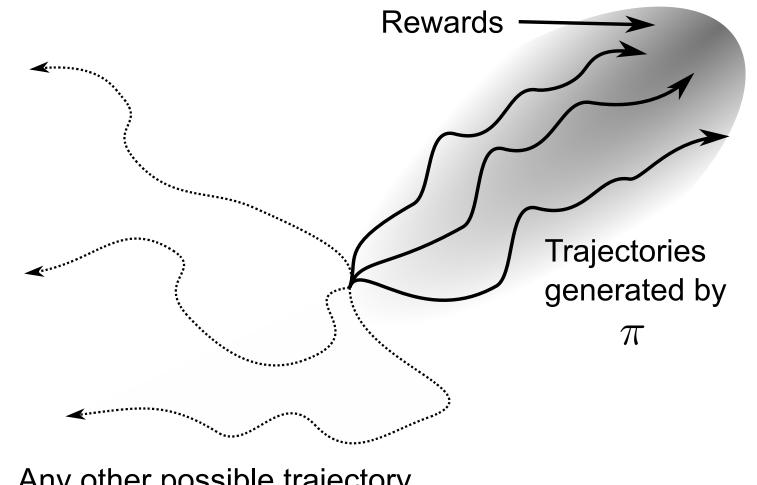
 \equiv

• Parameterized policies can represent continuous policies and avoid the curse of dimensionality.



Source: https://www.freecodecamp.org/news/an-introduction-to-policy-gradients-with-cartpole-and-doom-495b5ef2207f/

 \equiv



Any other possible trajectory

• Policy search methods aim at maximizing directly the expected return over all possible trajectories (episodes) $au = (s_0, a_0, \ldots, s_T, a_T)$

$$\mathcal{J}(heta) = \mathbb{E}_{ au \sim
ho_ heta}[R(au)]$$

- All trajectories au selected by the policy $\pi_ heta$ should be associated with a high expected return R(au) in order to maximize this objective function.
- $\rho_{\theta}(\tau)$ is the **likelihood** of the trajectory τ under the policy π_{θ} .
- what we want.

$$=\int_{ au}
ho_{ heta}(au)\;R(au)\;d au$$

• This means that the optimal policy should only select actions that maximizes the expected return: exactly

 \equiv

• Objective function to be maximized:

$$\mathcal{J}(heta) = \mathbb{E}_{ au \sim
ho_ heta}[R(au)] = \int_ au
ho_ heta(au) \; R(au) \; d au$$

• The objective function is however not model-free, as the likelihood of a trajectory does depend on the environments dynamics:

$$ho_ heta(au) = p_ heta(s_0, a_0, \dots, s_T, a_T) = p_0(s_0) \, \prod_{t=0}^T \pi_ heta(s_t, a_t) \, p(s_{t+1}|s_t, a_t)$$

- The objective function is furthermore **not computable**:
 - An infinity of possible trajectories to integrate if the action space is continuous.
 - Even if we sample trajectories, we would need a huge number of them to correctly estimate the objective function (sample complexity) because of the huge variance of the returns.

$$\mathcal{J}(heta) = \mathbb{E}_{ au \sim
ho_ heta}[R(au)] pprox rac{1}{M} \; \sum_{i=1}^M R(au_i)$$

Policy gradient

• All we need to find is a computable gradient $\nabla_{\theta} \mathcal{J}(\theta)$ to apply gradient ascent and backpropagation.

$$\Delta heta = \eta \,
abla_ heta \mathcal{J}(heta)$$

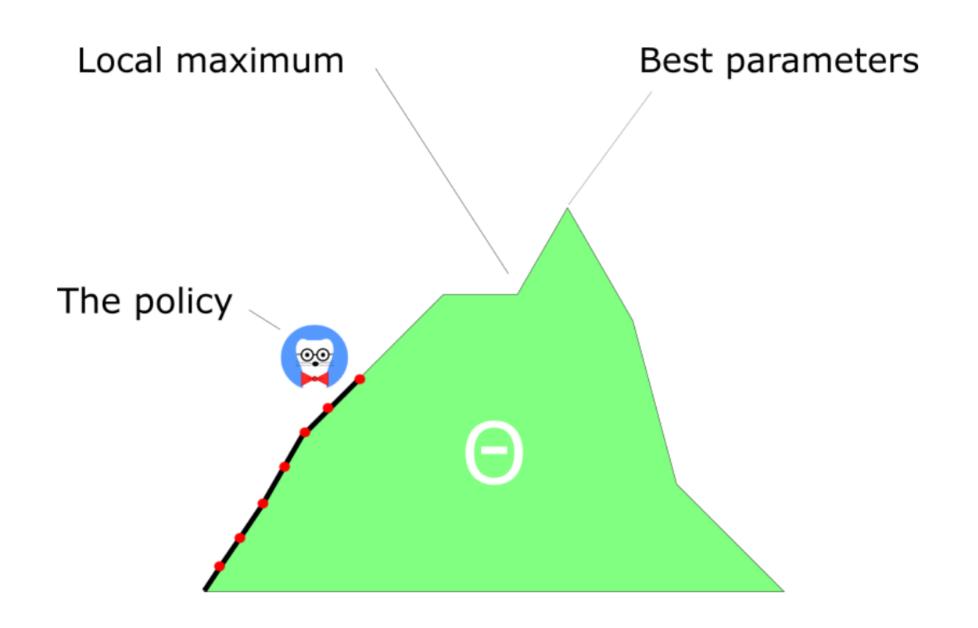
• **Policy Gradient** (PG) methods only try to estimate this gradient, but do not care about the objective function itself...

$$g =
abla_ heta \mathcal{J}(heta)$$

• In particular, any function $\mathcal{J}'(\theta)$ whose gradient is locally the same (or has the same direction) will do:

$${\mathcal J}'(heta) = lpha \, {\mathcal J}(heta) + eta \ \Rightarrow \
abla_{ heta} {\mathcal J}'(heta) \propto
abla_{ heta} {\mathcal J}(heta) \ \Rightarrow \ \Delta heta = \eta \,
abla_{ heta} {\mathcal J}'(heta)$$

- This is called **surrogate optimization**: we actually want to maximize $\mathcal{J}(\theta)$ but we cannot compute it.
- We instead create a surrogate objective $\mathcal{J}'(\theta)$ which is locally the same as $\mathcal{J}(\theta)$ and tractable.



Source: https://www.freecodecamp.org/news/an-introduction-to-policygradients-with-cartpole-and-doom-495b5ef2207f/

2 - REINFORCE

 \equiv

Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning

Ronald J. Williams College of Computer Science Northeastern University Boston, MA 02115

Appears in Machine Learning, 8, pp. 229-256, 1992.

• The **REINFORCE** algorithm (Williams, 1992) proposes an unbiased estimate of the policy gradient:

$$abla_ heta \, \mathcal{J}(heta) =
abla_ heta \, \int_ au
ho_ heta(au) \, R(au) \, d au = \int_ au (
abla_ heta \,
ho_ heta(au)) \, R(au) \, d au$$

by noting that the return of a trajectory does not depend on the weights θ (the agent only controls its actions, not the environment).

• We now use the **log-trick**, a simple identity based on the fact that:

$$rac{d\log f(x)}{dx}$$

or:

 \equiv

$$f'(x) = f(x) imes rac{d\log f(x)}{dx}$$

to rewrite the gradient of the likelihood of a single trajectory:

$$abla_ heta \,
ho_ heta \,
ho_ heta (au) =
ho_ heta (au)$$

$$=rac{f'(x)}{f(x)}$$

 $(au) imes
abla_ heta \log
ho_ heta(au)$

 \equiv

• The policy gradient becomes:

$$abla_ heta\,\mathcal{J}(heta) = \int_ au (
abla_ heta\,
ho_ heta(au))\,R(au)\,d au = \int_ au
ho_ heta(au)\,
abla_ heta\,\log
ho_ heta(au)\,R(au)\,d au$$

which now has the form of a mathematical expectation:

$$abla_ heta\, \mathcal{J}(heta) = \mathbb{E}_{ au \sim
ho_ heta}[$$

• The policy gradient is, in expectation, the gradient of the log-likelihood of a trajectory multiplied by its return.

 $\left[
abla_ heta \log
ho_ heta (au) \, R(au)
ight]$

 \equiv

• The advantage of REINFORCE is that it is **model-free**:

$$egin{split} &
ho_ heta(au) = p_ heta(s_0, a_0, \dots, s_T, a_T) = p_0(s_0) \, \prod_{t=0}^T \pi_ heta(s_t, a_t) p(s_{t+1} | s_t, a_t) \ & ext{log} \,
ho_ heta(au) = \log p_0(s_0) + \sum_{t=0}^T \log \pi_ heta(s_t, a_t) + \sum_{t=0}^T \log p(s_{t+1} | s_t, a_t) \end{split}$$

$$egin{aligned} p_{ heta}(au) &= p_{ heta}(s_0, a_0, \dots, s_T, a_T) = p_0(s_0) \prod_{t=0}^T \pi_{ heta}(s_t, a_t) p(s_{t+1}|s_t, a_t) \ & ext{og} \
ho_{ heta}(au) &= \log p_0(s_0) + \sum_{t=0}^T \log \pi_{ heta}(s_t, a_t) + \sum_{t=0}^T \log p(s_{t+1}|s_t, a_t) \end{aligned}$$

$$abla_ heta \log
ho_ heta(au) = \sum_{t=0}^T
abla_ heta \log \pi_ heta(s_t,a_t)$$

- The transition dynamics $p(s_{t+1}|s_t, a_t)$ disappear from the gradient.
- The **Policy Gradient** does not depend on the dynamics of the environment:

$$abla_ heta \mathcal{J}(heta) = \mathbb{E}_{ au \sim
ho_ heta} [\sum_{t=0}^T f_{t=0}]$$

 $abla_ heta \log \pi_ heta(s_t, a_t) \, R(au)]$

REINFORCE algorithm

The REINFORCE algorithm is a policy-based variant of Monte-Carlo control:

• while not converged:

 \equiv

- Sample M trajectories $\{\tau_i\}$ using the current policy π_{θ} and observe the returns $\{R(\tau_i)\}$.
- Estimate the policy gradient as an average over the trajectories:

$$abla_ heta \mathcal{J}(heta) pprox rac{1}{M} \sum_{i=1}^M \sum_{t=0}^T
abla_ heta$$

Update the policy using gradient ascent:

$$heta \leftarrow heta + \eta \,
abla_ heta$$

olicy $\pi_ heta$ and observe the returns $\{R(au_i)\}.$ the trajectories:

```
\log \pi_{	heta}(s_t, a_t) \, R(	au_i)
```

 $_{ heta}\mathcal{J}(heta)$

$$abla_ heta \mathcal{J}(heta) = \mathbb{E}_{ au \sim
ho_ heta} [\sum_{t=0}^T \mathbf{v}]_{t=0}$$

Advantages

- The policy gradient is model-free.
- it does not matter whether the states are Markov or not.

Inconvenients

 \equiv

- Only for episodic tasks.
- The gradient has a high variance: returns may change a lot during learning.
- It has therefore a high sample complexity: we need to sample many episodes to correctly estimate the policy gradient.
- Strictly **on-policy**: trajectories must be frequently sampled and immediately used to update the policy.

 $abla_ heta \log \pi_ heta(s_t, a_t) R(au)$

• Works with partially observable problems (POMDP): as the return is computed over complete trajectories,

REINFORCE with baseline

 \equiv

• To reduce the variance of the estimated gradient, a baseline is often subtracted from the return:

$$abla_ heta \mathcal{J}(heta) = \mathbb{E}_{ au \sim
ho_ heta} [\sum_{t=0}^T
abla_ heta \log \pi_ heta(s_t, a_t) \left(R(au) - b
ight)]$$

• As long as the baseline b is independent from θ , it does not introduce a bias:

 $\mathbb{E}_{ au \sim
ho_ heta} [
abla_ heta \log
ho_ heta(au) \, b] =$ J

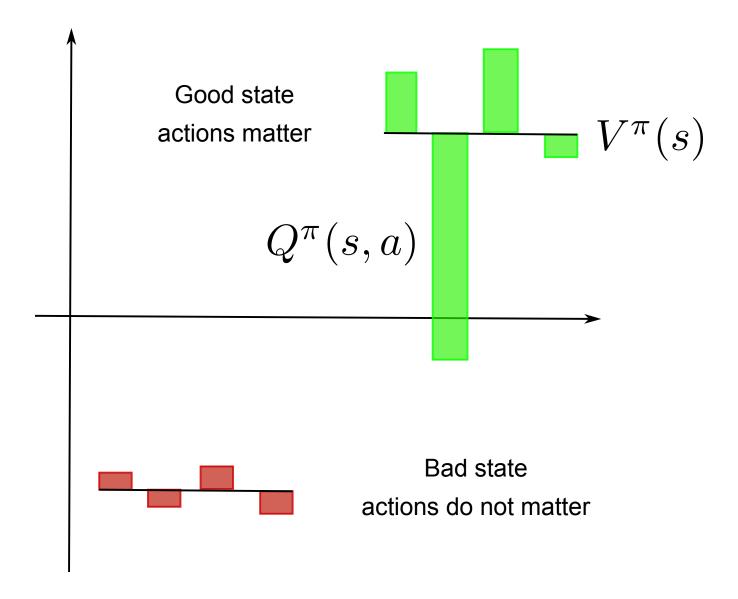
$$egin{aligned} &= \int_{ au}
ho_{ heta}(au)
abla_{ heta} \log
ho_{ heta}(au) \, b \, d au \ &= \int_{ au}
abla_{ heta}
ho_{ heta}(au) \, b \, d au \ &= b \,
abla_{ heta} \int_{ au}
ho_{ heta}(au) \, d au \ &= b \,
abla_{ heta} 1 \ &= 0 \end{aligned}$$

REINFORCE with baseline

• In practice, a baseline that works well is the value of the encountered states:

$$abla_ heta \mathcal{J}(heta) = \mathbb{E}_{ au \sim
ho_ heta} [\sum_{t=0}^T
abla_ heta \log t]$$

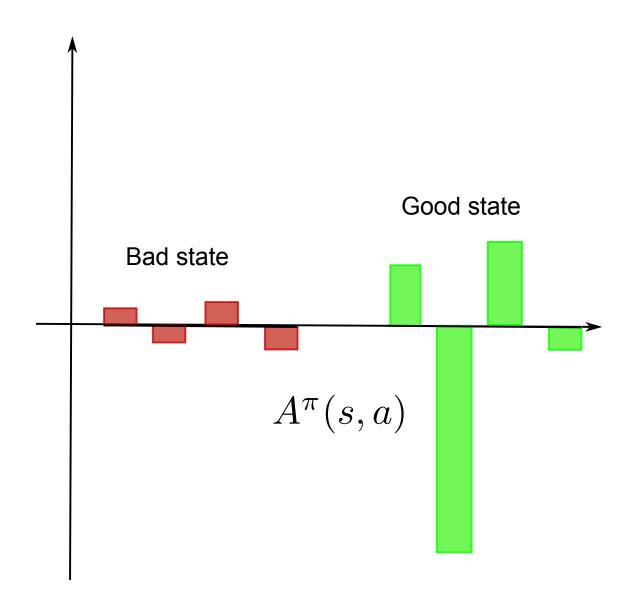
• $R(\tau) - V^{\pi}(s_t)$ becomes the **advantage** of the action a_t in s_t : how much return does it provide compared to what can be expected in s_t generally:



- As in **dueling networks**, it reduces the variance of the returns.
- Problem: the value of each state has to be learned separately (see actor-critic architectures).

Ξ

```
\exp(s_t,a_t)\left(R(	au)-V^{\pi}(s_t)
ight)
ight)
```



Application of REINFORCE to resource management

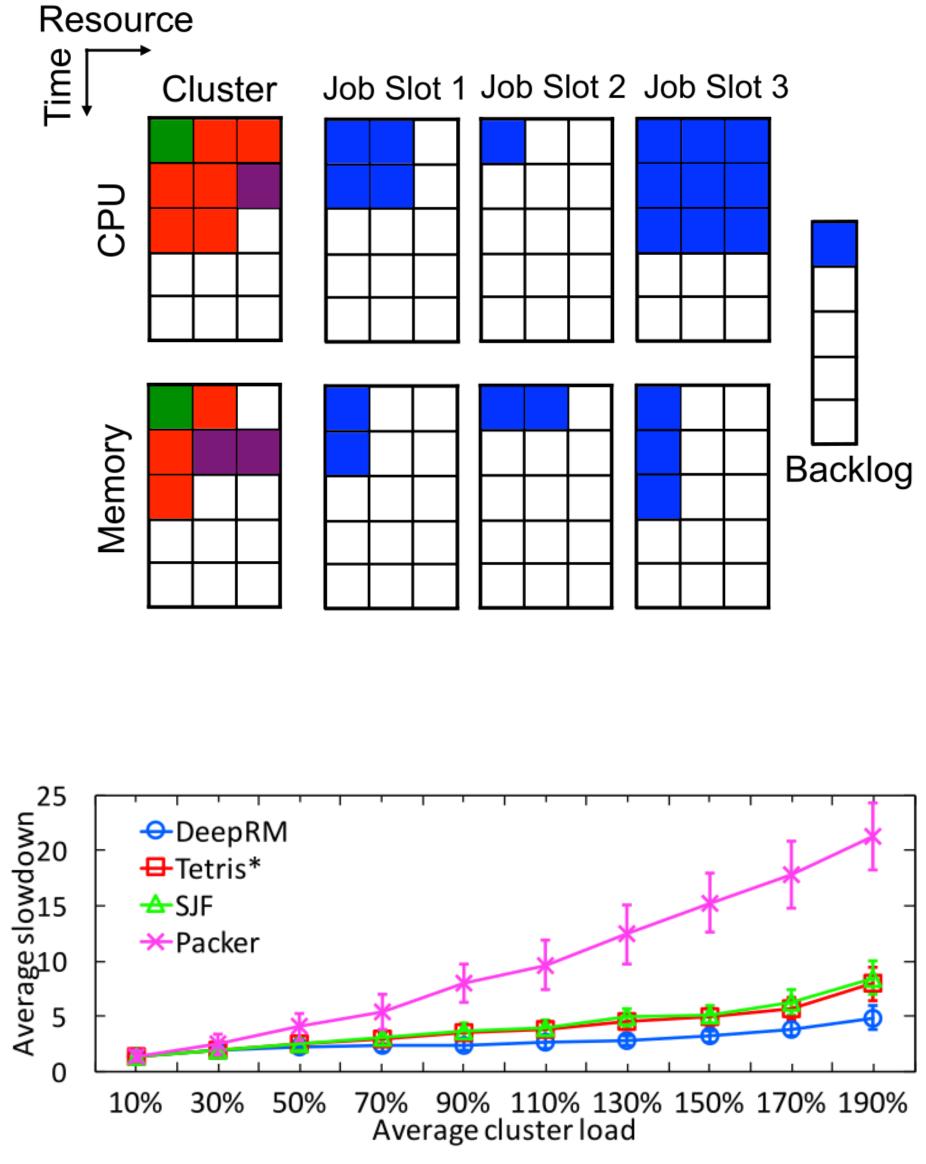


Figure 4: Job slowdown at different levels of load.

Ξ

- REINFORCE with baseline can be used to allocate resources (CPU cores, memory, etc) when scheduling jobs on a cloud of compute servers.
- The policy is approximated by a shallow NN (one hidden layer with 20 neurons).
- The state space is the current occupancy of the cluster as well as the job waiting list.
- The action space is sending a job to a particular resource.
- The reward is the negative **job slowdown**: how much longer the job needs to complete compared to the optimal case.
- DeepRM outperforms all alternative job schedulers.

3 - Policy Gradient Theorem

 \equiv

Policy Gradient Methods for Reinforcement Learning with Function Approximation

Richard S. Sutton, David McAllester, Satinder Singh, Yishay Mansour AT&T Labs - Research, 180 Park Avenue, Florham Park, NJ 07932

Policy Gradient

• The REINFORCE gradient estimate is the following:

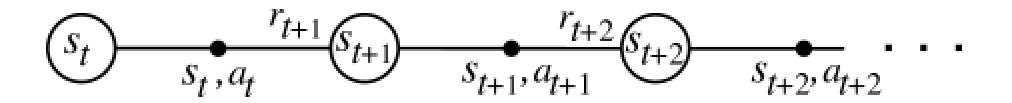
$$abla_ heta \mathcal{J}(heta) = \mathbb{E}_{ au \sim
ho_ heta} [\sum_{t=0}^T
abla_ heta \log \pi_ heta(s_t, a_t) \, R(au)] = \mathbb{E}_{ au \sim
ho_ heta} [\sum_{t=0}^T (
abla_ heta \log \pi_ heta(s_t, a_t)) \, (\sum_{t'=0}^T \gamma^{t'} \, r_{t'+1})]$$

• For each state-action pair (s_t, a_t) encountered during the episode, the gradient of the log-policy is multiplied by the complete return of the episode:

$$R(au) = \sum_{t'=0}^T \gamma^{t'} \, r_{t'+1}$$

- The causality principle states that rewards obtained before time t are not caused by that action.
- The policy gradient can be rewritten as:

$$abla_ heta \mathcal{J}(heta) = \mathbb{E}_{ au \sim
ho_ heta} [\sum_{t=0}^T
abla_ heta \log \pi_ heta(s_t, a_t) \, (\sum_{t'=t}^T \gamma^{t'-t} \, r_{t'+1})] = \mathbb{E}_{ au \sim
ho_ heta} [\sum_{t=0}^T
abla_ heta \log \pi_ heta(s_t, a_t) \, R_t]$$



Policy Gradient

• The return at time t (**reward-to-go**) multiplies the gradient of the log-likelihood of the policy (the score) for each transition in the episode:

$$abla_ heta \mathcal{J}(heta) = \mathbb{E}_{ au \sim
ho_ heta} [\sum_{t=0}^T
abla_ heta \log \pi_ heta(s_t, a_t) \, R$$

• As we have:

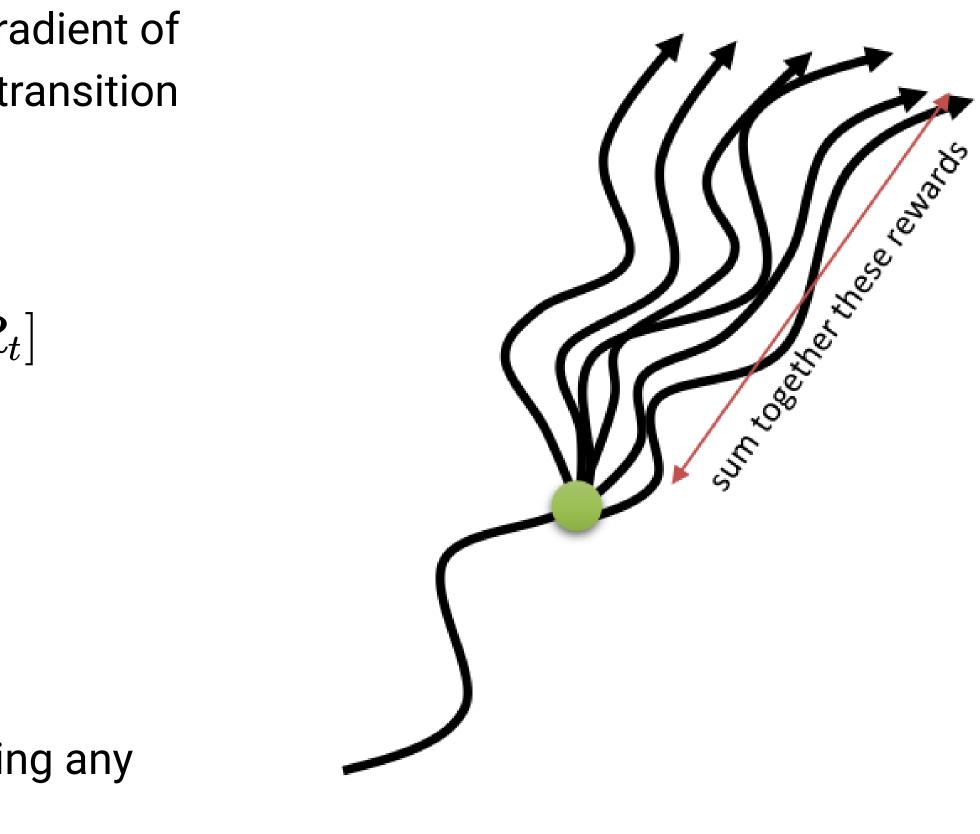
 \equiv

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[R_t|s_t=s;a_t=a]$$

we can replace R_t with $Q^{\pi_ heta}(s_t,a_t)$ without introducing any bias:

$$abla_ heta \mathcal{J}(heta) = \mathbb{E}_{ au \sim
ho_ heta} [\sum_{t=0}^T
abla_ heta \log \pi_ heta(s_t, a_t) \, Q^{\pi_ heta}(s_t)]$$

• This is true on average (no bias if the Q-value estimates are correct) and has a much lower variance!



 $[s_t, a_t)]$

Policy Gradient

_

• The policy gradient is defined over complete trajectories:

$$abla_ heta \mathcal{J}(heta) = \mathbb{E}_{ au \sim
ho_ heta} [\sum_{t=0}^T
abla_ heta$$

- However, $\nabla_{\theta} \log \pi_{\theta}(s_t, a_t) Q^{\pi_{\theta}}(s_t, a_t)$ now only depends on (s_t, a_t) , not the future nor the past.
- Each step of the episode is now independent from each other (if we have the Markov property).
- We can then sample single transitions instead of complete episodes:

$$abla_ heta \mathcal{J}(heta) \propto \mathbb{E}_{s \sim
ho_ heta, a \sim \pi_ heta} [
abla_ heta]$$

 $\log \pi_{ heta}(s_t, a_t) Q^{\pi_{ heta}}(s_t, a_t)$

 $abla_ heta \log \pi_ heta(s,a) \, Q^{\pi_ heta}(s,a)] \, .$

• Note that this is not directly the gradient of $\mathcal{J}(\theta)$, as the value of $\mathcal{J}(\theta)$ changes (computed over single) transitions instead of complete episodes, so it is smaller), but the gradients both go in the same direction!

Policy Gradient Theorem

 \equiv

For any MDP, the policy gradient is:

$$g =
abla_ heta \mathcal{J}(heta) = \mathbb{E}_{s \sim
ho_ heta, a \sim \pi_ heta}$$

 $\left[
abla_ heta \log \pi_ heta(s,a) \, Q^{\pi_ heta}(s,a)
ight]$

Policy Gradient Theorem with function approximation

• Better yet, (Sutton et al. 1999) showed that we can replace the true Q-value $Q^{\pi_{ heta}}(s,a)$ by an estimate $Q_{\varphi}(s,a)$ as long as this one is unbiased:

$$abla_ heta \mathcal{J}(heta) = \mathbb{E}_{s \sim
ho_ heta, a \sim \pi_ heta} [\mathbf{N}]$$

• We only need to have:

$$Q_arphi(s,a)pprox Q$$

• The approximated Q-values can for example minimize the mean square error with the true Q-values:

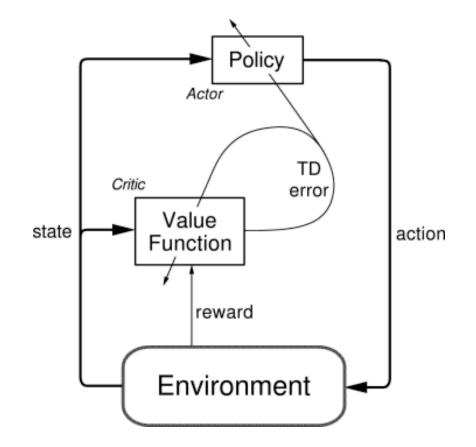
$$\mathcal{L}(arphi) = \mathbb{E}_{s \sim
ho_{ heta}, a \sim \pi_{ heta}} [(Q)]$$

- We obtain an **actor-critic** architecture:
 - the actor $\pi_{\theta}(s, a)$ implements the policy and selects an action a in a state s.
 - the critic $Q_{arphi}(s,a)$ estimates the value of that action and drives learning in the actor.

 $abla_ heta \log \pi_ heta(s,a) \, Q_arphi(s,a)]$

 $Q^{\pi_{ heta}}(s,a) \; orall s,a$

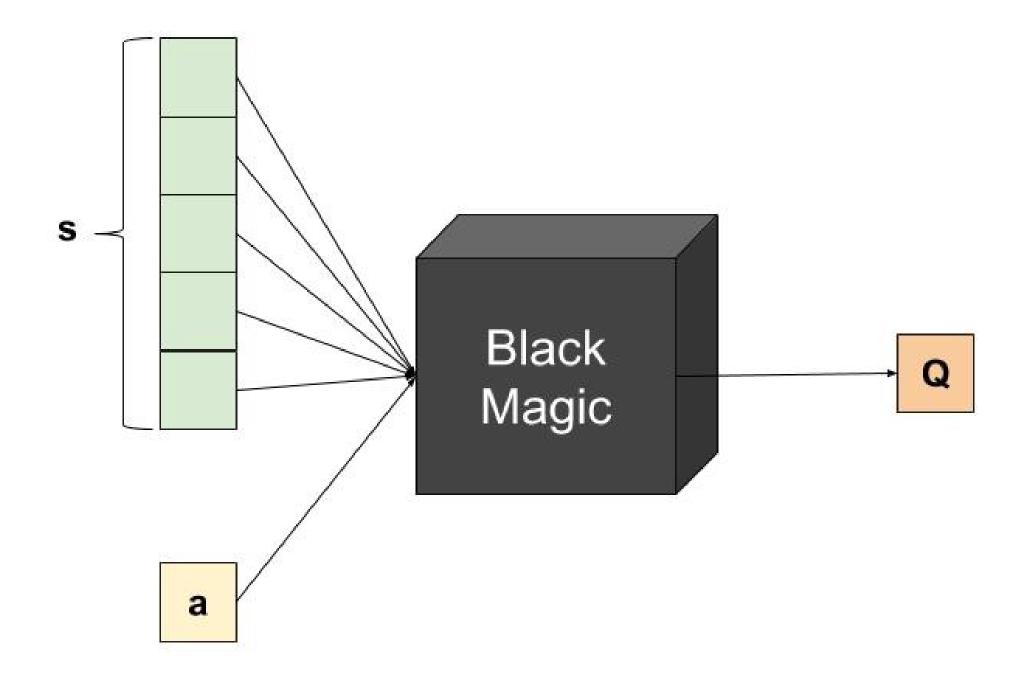
 $Q^{\pi_{ heta}}(s,a) - Q_{arphi}(s,a))^2]^2$



Function approximators to learn the Q-values

There are two possibilities to approximate Q-values $Q_{ heta}(s,a)$:

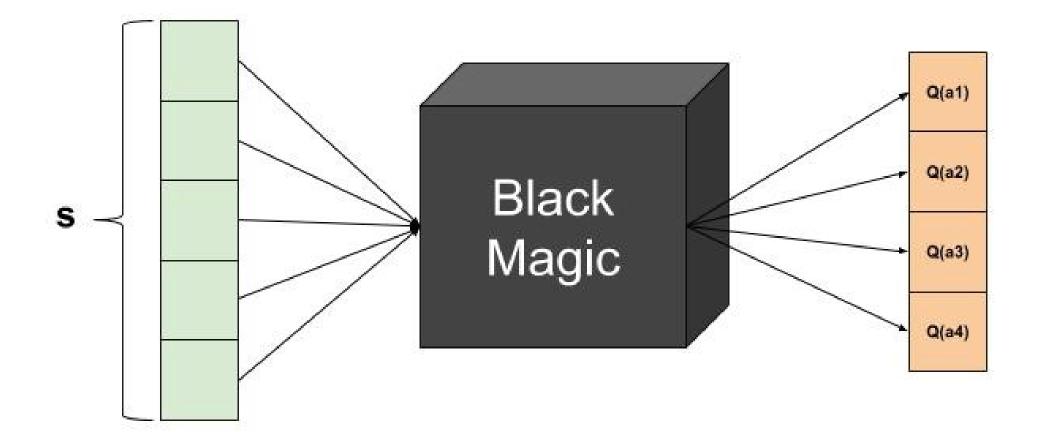
• The DNN approximates the Q-value of a single (s,a) pair.



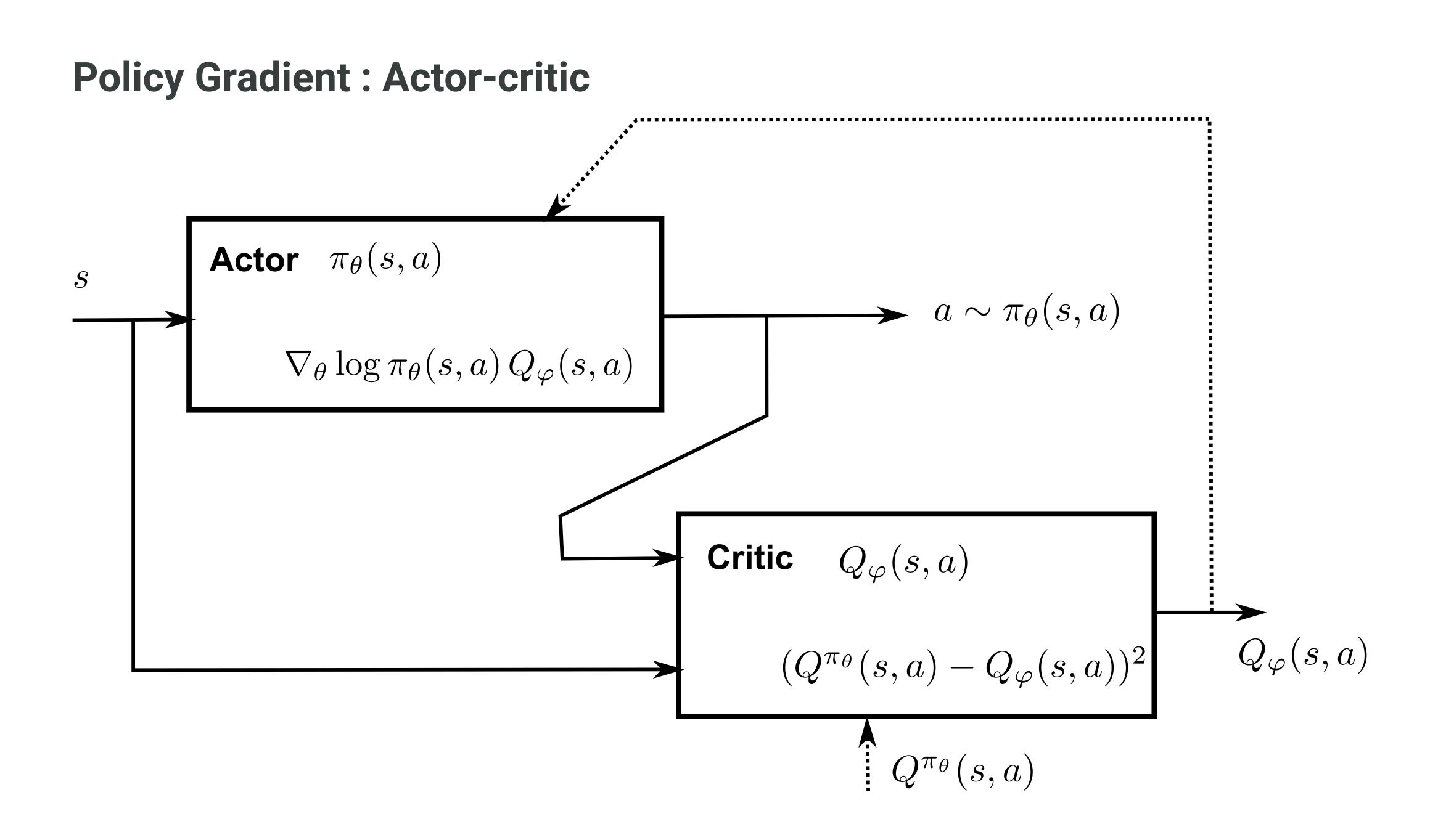
• The action space can be continuous.

 \equiv

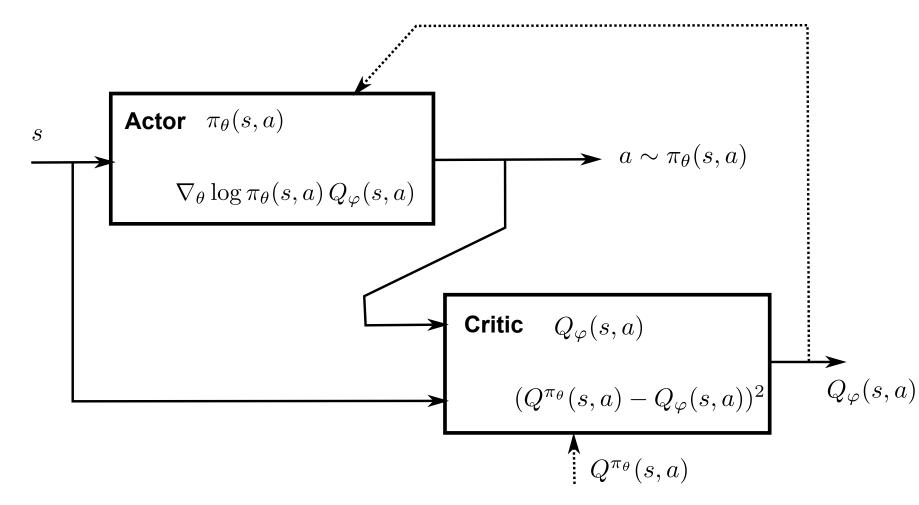
• The DNN approximates the Q-value of all actions a in a state s.



• The action space must be discrete (one neuron per action).



Policy Gradient : Actor-critic



- But how to train the critic? We do not know $Q^{\pi_{ heta}}(s,a)$. As always, we can estimate it through sampling:
 - Monte-Carlo critic: sampling the complete episode.

$$\mathcal{L}(arphi) = \mathbb{E}_{s \sim
ho_{ heta}, a \sim \pi_{ heta}} [(R(s,a) - Q_arphi(s,a))^2]$$

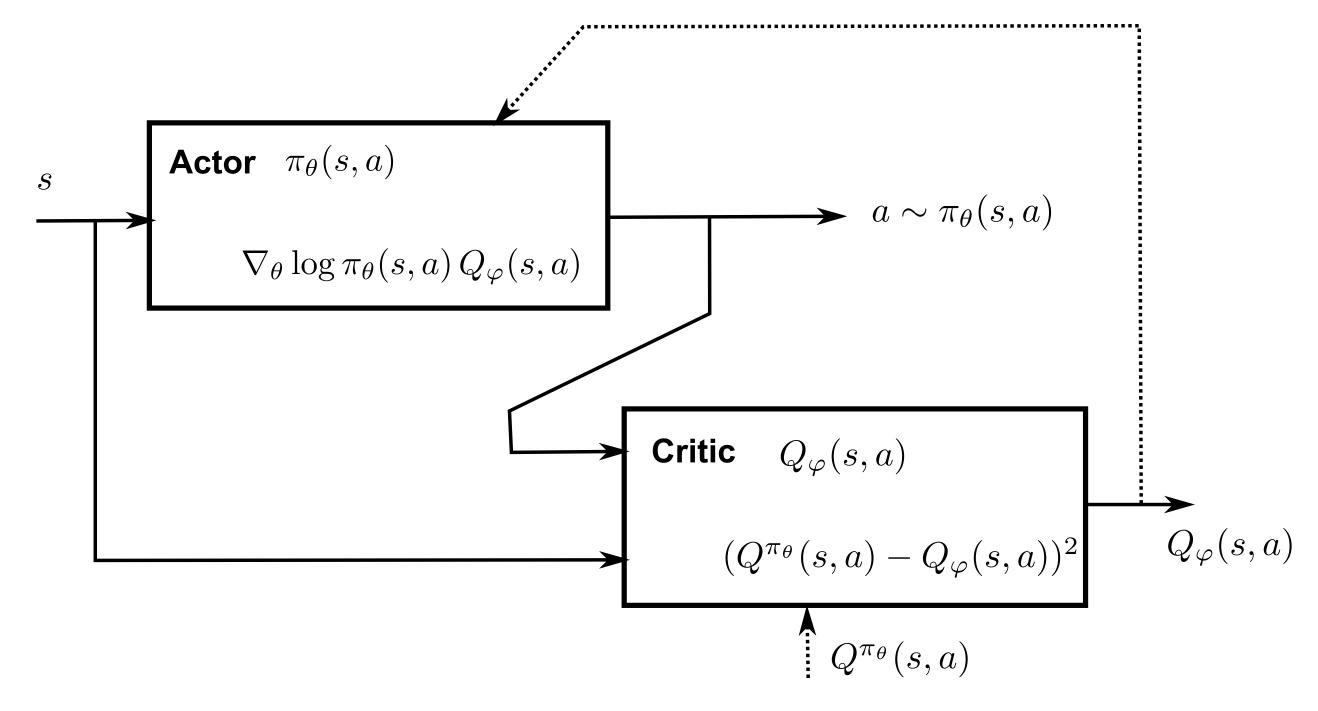
• SARSA critic: sampling (s, a, r, s', a') transitions.

$$\mathcal{L}(arphi) = \mathbb{E}_{s,s'\sim
ho_ heta, a,a'\sim \pi_ heta} [(r+\gamma \, Q_arphi(s',a') - Q_arphi(s,a))^2]$$

• **Q-learning** critic: sampling (s, a, r, s') transitions.

$$\mathcal{L}(arphi) = \mathbb{E}_{s,s'\sim
ho_ heta, a\sim \pi_ heta}[(r+\gamma \, \max_{a'} Q_arphi(s',a') - Q_arphi(s,a))^2]$$

Policy Gradient : Actor-critic



- The policy gradient (PG) theorem implies an actor-critic architecture.
- The **actor** learns using the PG theorem:

$$abla_ heta \mathcal{J}(heta) = \mathbb{E}_{s \sim
ho_ heta, a \sim \pi_ heta} [
abla_ heta \log \pi_ heta(s, a) \, Q_arphi(s, a)]$$

• The **critic** learns using Q-learning:

$$\mathcal{L}(arphi) = \mathbb{E}_{s,s'\sim
ho_ heta, a\sim \pi_ heta}[(r+\gamma \, \max_{a'} Q_arphi(s',a') - Q_arphi(s,a))^2]$$

Policy Gradient : reducing the variance

- As with REINFORCE, the PG actor suffers from the **high variance** of the Q-values.
- It is possible to use a **baseline** in the PG without introducing a bias:

$$abla_ heta \mathcal{J}(heta) = \mathbb{E}_{s \sim
ho_ heta, a \sim \pi_ heta} [
abla_ heta \log \pi_ heta(s, a) \left(Q^{\pi_ heta}(s, a) - b
ight)]$$

• In particular, the **advantage actor-critic** uses the value of a state as the baseline:

$$abla_ heta \mathcal{J}(heta) = \mathbb{E}_{s \sim
ho_ heta, a \sim \pi_ heta} [
abla_ heta \log \pi_ heta(s, a) \left(Q^{\pi_ heta}(s, a) - V^{\pi_ heta}(s)
ight)]$$

$$= \mathbb{E}_{s \sim
ho_{ heta}, a \sim \pi_{ heta}} [
abla_{ heta} \log \pi_{ heta}(s, a) \, A^{\pi_{ heta}}(s, a)]$$

The critic can either:

- Iearn to approximate both $Q^{\pi_{ heta}}(s,a)$ and $V^{\pi_{ heta}}(s)$ with two different NN (SAC).
- replace one of them with a sampling estimate (A3C, DDPG)
- Iearn the advantage $A^{\pi_{\theta}}(s, a)$ directly (GAE, PPO)

Many variants of the Policy Gradient

• Policy Gradient methods can take many forms :

$$abla_ heta J(heta) = \mathbb{E}_{s_t \sim
ho_ heta, a_t \sim \pi}$$

where:

- $\psi_t = R_t$ is the *REINFORCE* algorithm (MC sampling).
- $\psi_t = R_t b$ is the REINFORCE with baseline algorithm.
- $\psi_t = Q^{\pi}(s_t, a_t)$ is the policy gradient theorem.
- $\psi_t = A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) V^{\pi}(s_t)$ is the advantage actor-critic.
- $\psi_t = r_{t+1} + \gamma \, V^\pi(s_{t+1}) V^\pi(s_t)$ is the TD actor-critic. n-1

$$\bullet \; \psi_t = \sum_{k=0}^{\infty-1} \gamma^k \, r_{t+k+1} + \gamma^n \, V^\pi(s_{t+n}) - V^\pi(s_t)$$
 is

and many others...

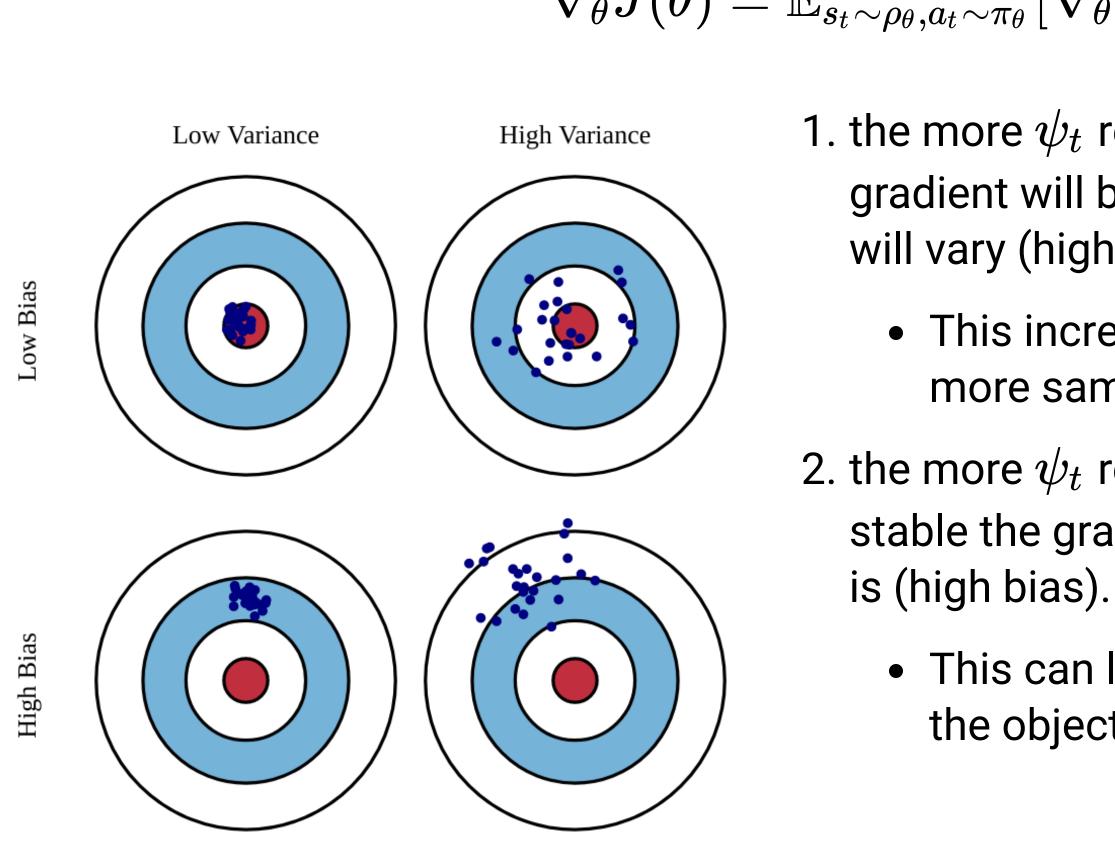
 \equiv

 $_{ au_{ heta}} [
abla_{ heta} \log \pi_{ heta}(s_t, a_t) \, \psi_t]$

s the *n-step advantage*.

Bias and variance of Policy Gradient methods

• The different variants of PG deal with the bias/variance trade-off.



• All the methods we will see in the rest of the course are attempts at finding the best trade-off.

```
abla_	heta J(	heta) = \mathbb{E}_{s_t \sim 
ho_	heta, a_t \sim \pi_	heta} [
abla_	heta \log \pi_	heta(s_t, a_t) \, \psi_t]
```

1. the more ψ_t relies on **sampled rewards** (e.g. R_t), the more the gradient will be correct on average (small bias), but the more it will vary (high variance).

• This increases the sample complexity: we need to average more samples to correctly estimate the gradient.

2. the more ψ_t relies on **estimations** (e.g. the TD error), the more stable the gradient (small variance), but the more incorrect it

• This can lead to suboptimal policies, i.e. local optima of the objective function.