REEHS

UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE

CHEMNITZ

Deep Reinforcement Learning
Advantage actor-critic (A2C, A3C)

Julien Vitay

Professur fur Kunstliche Intelligenz - Fakultat fir Informatik

1/25

1 - Advantage actor-critic

Advantage actor-critic

o Let’s consider an n-step actor-critic architecture where the Q-value of the action (s, a;) is approximated
by the n-step return:

n—1

Q" (st,ar) = Ry = Z’Yk rerk+1 7" Vp(Stin)
k=0

o The actor 7y (s, a) uses PG with baseline to learn the policy:

VoT (0) = Egwpp,ai~ms | Vo log mo(ss, ar) (R — Vi,(5¢))]

o The critic V,,(s) approximates the value of each state:

L(SO) — 4:515’\“,09,@15“’71'9 [(R? o Vw(st))z]

3/25

Advantage actor-critic

Actor 7y (s,a)

Vologmp(s,a) (R —V,(s))

Critic Vgp(s)

(R — V@(S))z

Advantage actor-critic

Actor 7y(s,a)

> a~ Ty(s,a)
Vologmg(s,a) (R — Vy(s))

o,
L]
L]
v
]
v
L]
«
L]
L]
L4
L4
L4
v
L]
v
L]
v
L]
~
L]
“
L4
v
L4
«
L4
v
o,
o,

. R = n-steps return

> > V,(s)
(R = Vi(s))?

e The advantage actor-critic is strictly on-policy:

= The critic must evaluate actions selected the current version of the actor 7y, not an old version or
another policy.

= The actor must learn from the current value function V™ = VSO.

(VoT (0) = Es,mppasmms Vo 1og mo(s1,a1) (R} — Vi,(s51))]

‘C(SO) — {"StNPO,atNﬂ'H [(R? — VSO(St))Z]

e We cannot use an experience replay memory to deal with the correlated inputs, as it is only for off-policy
methods.

5/25

Distributed RL

e We cannot get an uncorrelated batch of transitions by acting sequentially with a single agent.

r ¥
St 4y 12 G4] St+2 G4

o A simple solution is to have multiple actors with the same weights @ interacting in parallel with different
copies of the environment.

l sample batches

concat

Trainer n Rollout Workers
Learner -

new weights T

Source: https://ray.readthedocs.io/en/latest/rllib.html

e Each rollout worker (actor) starts an episode in a different state: at any point of time, the workers will be
in uncorrelated states.

e From time to time, the workers all send their experienced transitions to the learner which updates the
policy using a batch of uncorrelated transitions.

o After the update, the workers use the new policy.

6/25

https://ray.readthedocs.io/en/latest/rllib.html

Distributed RL

Worker 2

Worker 3

Worker n

Distributed RL

e Initialize global policy or value network 6.

e Initialize IV copies of the environment in different states.
e while True:

= for each worker in parallel:

o Copy the global network parameters 6 to each worker:
Hk — 6

o Initialize an empty transition buffer Dy,.

o Perform d steps with the worker on its copy of the environment.

o Append each transition (s, a, r, s') to the transition buffer.
= join(): wait for each worker to terminate.

= Gather the [V transition buffers into a single buffer D.

» Update the global network on D to obtain new weights 6.

8/25

Distributed RL for value-based networks (DQN variants)

e Distributed learning can be used for any deep RL algorithm, including DQN variants.
e Distributed DQN variants include GORILA, IMPALA, APE-X, R2D2.

 “All" you need is one (or more) GPU for training the global network and N CPU cores for the workers.

e The workers fill the ERM much more quickly.

Sampled experience

Learner Replay
Updated priorities

Network Experiences

Actor

Network Initial priorities

Generated experience

Network parameters

Environment

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M., van Hasselt, H., et al. (2018). Distributed Prioritized Experience Replay. arXiv:1803.00933.

9/25

Distributed RL

e In practice, managing the communication between the workers and the global network through processes
can be quite painful.

e There are some frameworks abstracting the dirty work, such as RLlIib.

OpenAl
Gym

Multi-Agent /
Hierarchical

Policy
Serving

Offline
Data

— (1) Application Support

Custom Algorithms

RLIib Algorithms

Source: https://ray.readthedocs.io/en/latest/rllib.html

— (2) Abstractions for RL

— (3) Distributed Execution

10/25

https://ray.readthedocs.io/en/latest/rllib.html

Distributed RL

e Having multiple workers interacting with different environments is easy in simulation (Atari games).

e With physical environments, working in real time, it requires lots of money...

@ Large-scale data collection with an array of robots

11/25

https://www.youtube.com/watch?v=iaF43Ze1oeI

2 - A3C: Asynchronous advantage actor-critic

Asynchronous Methods for Deep Reinforcement Learning

Volodymyr Mnih' VMNIH @ GOOGLE.COM
Adria Puigdoménech Badia' ADRIAP @ GOOGLE.COM
Mehdi Mirza':? MIRZAMOM @IRO.UMONTREAL.CA
Alex Graves' GRAVESA @ GOOGLE.COM
Tim Harley' THARLEY @ GOOGLE.COM
Timothy P. Lillicrap’ COUNTZERO @GOOGLE.COM
David Silver' DAVIDSILVER @ GOOGLE.COM
Koray Kavukcuoglu ' KORAYK@GOOGLE.COM

1 Google DeepMind
 Montreal Institute for Learning Algorithms (MILA), University of Montreal

Mnih, V., Badia, A. P, Mirza, M., Graves, A,, Lillicrap, T. P, Harley, T., et al. (2016). Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.01783

12/25

A3C: Asynchronous advantage actor-critic

e Mnih et al. (2016) proposed the A3C algorithm (asynchronous advantage actor-critic).

e The stochastic policy 7y is produced by the actor with weights € and learned using :

VoT (0) = Eg,~ps,a,~m | Vo logmo(se,ar) (R — Vio(st))]

Actor (s, a) e The value of a state V,,(s) is produced by the critic

> a~ (s, a) with weights ¢, which minimizes the mse with the

Vo log (s, a) (R = Vi (s)) n-step return:

v,
L]
L]
]
L]
L]
]
L]
L]
L]
L4
L]
L]
L4
L]
L]
L]
L]
L]
L]
L]
L
L]
L]
v
L]
L]
-
v,
v,

. R = n-steps return

““““““““““““““ ﬂ 2
— A E(SO) — ‘LStNPH,CLtNﬂ'e [(R? R V@(St))]
> ((5))? >V, (s) :
=V,
(s ;= Z ’)’k Perk+1 7" Vo(Stan)
k=0

e Both the actor and the critic are trained on batches of transitions collected using parallel workers.

e Two things are different from the general distributed approach: workers compute partial gradients and
updates are asynchronous.

Mnih, V., Badia, A. P, Mirza, M., Graves, A, Lillicrap, T. P, Harley, T., et al. (2016). Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.01783

13/25

A3C: Asynchronous advantage actor-critic

/ Global Network \

N T~

@ N £ N £) @)
— e R — e R —— I—
oy o 9o —J
oy o o —J
N Worker 1 y N Worker 2 Y N Worker 3 y _ Worker n y

! !

! !

o def worker(f, ©):

= |nitialize empty transition buffer D. Initialize the environment to the last state visited by this worker.

= for n steps:

o Select an action using 7y, store the transition in the transition buffer.

= for each transition in D:
n—1
o Compute the n-step return in each state R’ = Z vk Piakel + V" V¢(8t+n)
k=0
= Compute policy gradient for the actor on the transition buffer:

1 n
df = VyJ(0) = - Z Vo logmo(st,ar) (R — Vio(st))

t=1

= Compute value gradient for the critic on the transition buffer:

dp=VoL(p) =~ S (R~ Vo(s1) VWi (se)

t=1

= return df, dy

15/25

A2C: global networks

e Initialize actor 6 and critic .

e Initialize K workers with a copy of the environment.
o fort € |0, Tiotall:
= for K workers in parallel:
o db, dpy, = worker(6, @)
= join()
= Merge all gradients:

1 & 1 &
d@zE;de; d@zE;dgok

= Update the actor and critic using gradient ascent/descent:

0<—0+ndl; o< po—ndp

16/25

A3C: Asynchronous advantage actor-critic

e The previous slide depicts A2C, the synchronous version of A3C.

o A2C synchronizes the workers (threads), i.e. it waits for the /X workers to finish their job before merging
the gradients and updating the global networks.

e A3C is asynchronous:

= the partial gradients are applied to the global networks as soon as they are available.

= No need to wait for all workers to finish their job.

e As the workers are not synchronized, this means that one worker could be copying the global networks 6
and ¢ while another worker is writing them.

e This is called a Hogwild! update: no locks, no semaphores. Many workers can read/write the same data.

e |t turns out NN are robust enough for this kind of updates.

17 /25

A3C: asynchronous updates

e Initialize actor @ and critic .
e Initialize K workers with a copy of the environment.

e for K workers in parallel:
= fort € |0, Tiotal|:
o Copy the global networks 6 and ¢.

o Compute partial gradients:
dfy, dyp, = worker(0, ©)
o Update the global actor and critic using the partial gradients:

0 < 0 + ndo

p < @ —ndpy

18/25

A3C: Asynchronous advantage actor-critic

1

Worker 1

!

Environment 1

Global Network

Policy 1(s)

V(s)

Worker 2

!

Environment 2

1}

Worker 3

!

Environment3 ...

¥

Worker n

!

Environment n

A3C does not use an experience replay memory as
DQN.

Instead, it uses multiple parallel workers to
distribute learning.

Each worker has a copy of the actor and critic
networks, as well as an instance of the
environment.

Weight updates are synchronized regularly though
a master network using Hogwild!-style updates

(every n = 9 steps!).

Because the workers learn different parts of the
state-action space, the weight updates are not very

correlated.

o It works best on shared-memory systems (multi-core) as communication costs between GPUs are huge.

Mnih, V., Badia, A. P, Mirza, M., Graves, A, Lillicrap, T. P, Harley, T., et al. (2016). Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.01783

19/25

A3C : results

2 ' Breakout
16000 samrider . 600 Eatod
— DQN — DON

14000 — 1-step Q " epn.— 1-step O
17000 = 1-step SARSA — 1-step SARSA
n-step O n-step Q
10000. A3C W0 asc
i
g 8000 . 300 -
i
G000 - t —an |
4000 -
100 -
2000 - :
0 D
O 2 4 6 8 10 12 14 o 2 & B8

Training time (hours)

Training time (hours)

0. Fong 17000 . Fbert 1600 space Invaders
— DON — DON
| — l-step Q 1400 1.step Q
20 e s — 1-step SARSA 1200. 1-step SARSA
n-step O n-step Q
10 BLLO - AFC 1000 - A3C
gL gl
g 0 6000 - 8. BOD -
L

. —10- f —f":-':*' - 4000 - — 500
| — 1-step ,
| 400 -
| — 1-step SARSA
. =20 B 2000 ' oo £
A3C
T 0 . i - |
10 12 14 6 2 4 6 B 10 12 14 6 2 4 6 8 10 12 14 6 2 4 6 8 10 12 14

Training time (howurs) Training time (hours) Training time (hours)

Figure 1. Learning speed comparison for DQN and the new asynchronous algorithms on five Atan 2600 games. DQN was trained on
a single Nvidia K40 GPU while the asynchronous methods were trained using 16 CPU cores. The plots are averaged over 3 runs. In
the case of DQN the runs were for different seeds with fixed hyperparameters. For asynchronous methods we average over the best 5
models from 50 experiments with learning rates sampled from LogUni form(10~*, 10™%) and all other hyperparameters fixed.

e A3C set a new record for Atari games in 2016.

Method Training Time Mean Median
DQN 8 days on GPU 121.9% | 47.5%
Gorila 4 days, 100 machines | 215.2% | 71.3%
D-DQN 8 days on GPU 332.9% | 110.9%
Dueling D-DQN 8 days on GPU 343.8% | 117.1%
Prioritized DQN 8 days on GPU 463.6% | 127.6%
A3C, FF 1 day on CPU 344.1% | 68.2%
A3C, FF 4 days on CPU 496.8% | 116.6%
A3C, LSTM 4 days on CPU 623.0% | 112.6%

e The main advantage is that the workers gather

experience in parallel: training is much faster than
with DQN.

e LSTMs can be used to improve the performance.

Table 1. Mean and median human-normalized scores on 57 Atari
games using the human starts evaluation metric. Supplementary

Table SS3 shows the raw scores for all games.

Mnih, V., Badia, A. P, Mirza, M., Graves, A,, Lillicrap, T. P, Harley, T., et al. (2016). Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.01783

20/25

A3C : results

e Learning is only marginally better with more threads:

Breakout

Pong *bert

Space Invaders

800 30 12000 1400
— A3C, 1threads — A3C, 1 threads — A3C, 1threads
— A3C, 2 threads — A3C, 2 threads — A3C, 2 threads
700 —— A3C, 4 threads 20 _ ~ - 10000 — A3C 4 threads 1200 — A3C, 4 threads
—— A3C, B threads —— A3C, B threads £ —— A3C, B threads
&00 A3C, 16 threads A3C, 16 threads i A3C, 16 threads
1000
10 8000
500 :
. r:%&g ' M@* w v v 800
E 400 I : E 0 Lﬁ 6000 Lﬁ
dp 600
300
—-10 4000
400
200 —— A3C, 1threads
— A3C, 2 threads
100 —20. — A3C, 4 threads 2000 200
—— A3C, 8 threads 1
A3C, 16 threads =
0 — ~30 0= 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Training epochs Training epochs Training epochs Training epochs
600 Breakout 30 Pang 12000 O*bert 1600 Space Invaders
—— A3C, 1 threads —— A3C, 1threads — A3C, 1 threads — A3C, 1threads
— A3C, 2 threads — A3C, 2 threads —— A3C, 2 threads — A3C, 2 threads
—— A3C, 8 threads —— A3C, B threads —— A3C, 8 threads —— A3C, 8 threads
A3C, 16 threads A3C, 16 threads A3C, 16 threads 1200 A3C, 16 threads
400 8000
1000
o y o y
g 300 a 2 6000 g 800
i 1 1 1
600
200 4000
400
100 2000
200
0 -30 0 0
0 2 4 B 8 10 12 14 0 2 4 B 8 10 12 14 0 2 4 B 8 10 12 14 0 2 4 B 8 10 12 14
Training time (hours) Training time (hours) Training time (hours) Training time (hours)

Mnih, V., Badia, A. P, Mirza, M., Graves, A, Lillicrap, T. P, Harley, T,, et al. (2016). Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.01783 21 /25

A3C: TORCS simulator

@ Asynchronous Methods for Deep Reinforcement Learning: TORCS

22 /25

https://www.youtube.com/watch?v=0xo1Ldx3L5Q

A3C: Labyrinth

@ Asynchronous Methods forDeep

—

einforcement Learning: Labyrinth

23 /25

https://www.youtube.com/watch?v=nMR5mjCFZCw

A3C: continuous control problems

@ Asynchronous Methods for Deep Reinforcement Learning: MuJoCo

24 /25

https://www.youtube.com/watch?v=Ajjc08-iPx8

Comparison with DQN

e A3C came up in 2016. A lot of things happened since then...

DQN

DDQN

Prioritized DDQN !
Dueling DDQN I ..

200% - A3C \[W
Distributional DQN
Noisy DQN

Rainbow Hf‘

Wl

100%

Median human-normalized score

o/, Wl | 1 |
U% 7 44 100 200

Millions of frames

Figure 1: Median human-normalized performance across
57 Atar1 games. We compare our integrated agent (rainbow-
colored) to DQN (grey) and six published baselines. Note
that we match DQN’s best performance after 7M frames,
surpass any baseline within 44M frames, and reach sub-
stantially improved final performance. Curves are smoothed
with a moving average over 5 points.

25/25

