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1 - Advantage actor-critic
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Advantage actor-critic
Let’s consider an n-step actor-critic architecture where the Q-value of the action  is approximated
by the n-step return:

The actor  uses PG with baseline to learn the policy:

The critic  approximates the value of each state:
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Advantage actor-critic

Critic

Actor

The advantage actor-critic is strictly on-policy:

The critic must evaluate actions selected the current version of the actor , not an old version or
another policy.

The actor must learn from the current value function .

We cannot use an experience replay memory to deal with the correlated inputs, as it is only for off-policy
methods.
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Distributed RL
We cannot get an uncorrelated batch of transitions by acting sequentially with a single agent.

A simple solution is to have multiple actors with the same weights  interacting in parallel with different
copies of the environment.

Each rollout worker (actor) starts an episode in a different state: at any point of time, the workers will be
in uncorrelated states.

From time to time, the workers all send their experienced transitions to the learner which updates the
policy using a batch of uncorrelated transitions.

After the update, the workers use the new policy.

θ

Source: https://ray.readthedocs.io/en/latest/rllib.html
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Distributed RL
Initialize global policy or value network .

Initialize  copies of the environment in different states.

while True:

for each worker in parallel:

Copy the global network parameters  to each worker:

Initialize an empty transition buffer .

Perform  steps with the worker on its copy of the environment.

Append each transition  to the transition buffer.

join(): wait for each worker to terminate.

Gather the  transition buffers into a single buffer .

Update the global network on  to obtain new weights .
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Distributed RL for value-based networks (DQN variants)
Distributed learning can be used for any deep RL algorithm, including DQN variants.

Distributed DQN variants include GORILA, IMPALA, APE-X, R2D2.

“All” you need is one (or more) GPU for training the global network and  CPU cores for the workers.

The workers fill the ERM much more quickly.

N

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M., van Hasselt, H., et al. (2018). Distributed Prioritized Experience Replay. arXiv:1803.00933. 9
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Distributed RL
In practice, managing the communication between the workers and the global network through processes
can be quite painful.

There are some frameworks abstracting the dirty work, such as RLlib.

Source: https://ray.readthedocs.io/en/latest/rllib.html
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Distributed RL
Having multiple workers interacting with different environments is easy in simulation (Atari games).

With physical environments, working in real time, it requires lots of money…

Large-scale data collection with an array of robotsLarge-scale data collection with an array of robots
ShareShare
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2 - A3C: Asynchronous advantage actor-critic
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A3C: Asynchronous advantage actor-critic
Mnih et al. (2016) proposed the A3C algorithm (asynchronous advantage actor-critic).

The stochastic policy  is produced by the actor with weights  and learned using :

The value of a state  is produced by the critic
with weights , which minimizes the mse with the
n-step return:

Both the actor and the critic are trained on batches of transitions collected using parallel workers.

Two things are different from the general distributed approach: workers compute partial gradients and
updates are asynchronous.
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A3C: Asynchronous advantage actor-critic
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def worker( , ):

Initialize empty transition buffer . Initialize the environment to the last state visited by this worker.

for  steps:

Select an action using , store the transition in the transition buffer.

for each transition in :

Compute the n-step return in each state 

Compute policy gradient for the actor on the transition buffer:

Compute value gradient for the critic on the transition buffer:

return , 
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A2C: global networks
Initialize actor  and critic .

Initialize  workers with a copy of the environment.

for :

for  workers in parallel:

,  = worker( , )

join()

Merge all gradients:

Update the actor and critic using gradient ascent/descent:
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A3C: Asynchronous advantage actor-critic
The previous slide depicts A2C, the synchronous version of A3C.

A2C synchronizes the workers (threads), i.e. it waits for the  workers to finish their job before merging
the gradients and updating the global networks.

A3C is asynchronous:

the partial gradients are applied to the global networks as soon as they are available.

No need to wait for all workers to finish their job.

As the workers are not synchronized, this means that one worker could be copying the global networks 
and  while another worker is writing them.

This is called a Hogwild! update: no locks, no semaphores. Many workers can read/write the same data.

It turns out NN are robust enough for this kind of updates.

K

θ

φ
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A3C: asynchronous updates
Initialize actor  and critic .

Initialize  workers with a copy of the environment.

for  workers in parallel:

for :

Copy the global networks  and .

Compute partial gradients:

Update the global actor and critic using the partial gradients:
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A3C: Asynchronous advantage actor-critic
A3C does not use an experience replay memory as
DQN.

Instead, it uses multiple parallel workers to
distribute learning.

Each worker has a copy of the actor and critic
networks, as well as an instance of the
environment.

Weight updates are synchronized regularly though
a master network using Hogwild!-style updates
(every  steps!).

Because the workers learn different parts of the
state-action space, the weight updates are not very
correlated.

It works best on shared-memory systems (multi-core) as communication costs between GPUs are huge.

n = 5
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A3C : results

A3C set a new record for Atari games in 2016.

The main advantage is that the workers gather
experience in parallel: training is much faster than
with DQN.

LSTMs can be used to improve the performance.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., et al. (2016). Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.01783 20
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A3C : results
Learning is only marginally better with more threads:

but much faster!

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., et al. (2016). Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.01783 21
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A3C: TORCS simulator

Asynchronous Methods for Deep Reinforcement Learning: TORCSAsynchronous Methods for Deep Reinforcement Learning: TORCS
ShareShare
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https://www.youtube.com/watch?v=0xo1Ldx3L5Q


A3C: Labyrinth

Asynchronous Methods for Deep Reinforcement Learning: LabyrinthAsynchronous Methods for Deep Reinforcement Learning: Labyrinth
ShareShare

23
/
25

https://www.youtube.com/watch?v=nMR5mjCFZCw


A3C: continuous control problems

Asynchronous Methods for Deep Reinforcement Learning: MuJoCoAsynchronous Methods for Deep Reinforcement Learning: MuJoCo
ShareShare
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https://www.youtube.com/watch?v=Ajjc08-iPx8


Comparison with DQN
A3C came up in 2016. A lot of things happened since then…
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