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1 - Advantage actor-critic



Advantage actor-critic

o Let’s consider an n-step actor-critic architecture where the Q-value of the action (s, a; ) is approximated
by the n-step return:

n—1

Q" (st,ar) = Ry = Z’Yk rerk+1 7" Vp(Stin)
k=0

o The actor 7y (s, a) uses PG with baseline to learn the policy:

VoT (0) = Egwpp,ai~ms | Vo log mo(ss, ar) (R — Vi,(5¢))]

o The critic V,,(s) approximates the value of each state:

L(SO) — 4:515’\“,09,@15“’71'9 [(R? o Vw(st))z]
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Advantage actor-critic

Actor 7y (s,a)

Vologmp(s,a) (R —V,(s))

Critic Vgp(s)

(R — V@(S))z




Advantage actor-critic
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. R = n-steps return

> > V,(s)
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e The advantage actor-critic is strictly on-policy:

= The critic must evaluate actions selected the current version of the actor 7y, not an old version or
another policy.

= The actor must learn from the current value function V™ = VSO.

(VoT (0) = Es,mppasmms Vo 1og mo(s1,a1) (R} — Vi,(s51))]

‘C(SO) — {"StNPO,atNﬂ'H [(R? — VSO(St))Z]

e We cannot use an experience replay memory to deal with the correlated inputs, as it is only for off-policy
methods.
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Distributed RL

e We cannot get an uncorrelated batch of transitions by acting sequentially with a single agent.

r ¥
St 4y 12 G4 ] St+2 G4

o A simple solution is to have multiple actors with the same weights @ interacting in parallel with different
copies of the environment.

l sample batches

concat

Trainer n Rollout Workers
Learner -

new weights T

Source: https://ray.readthedocs.io/en/latest/rllib.html

e Each rollout worker (actor) starts an episode in a different state: at any point of time, the workers will be
in uncorrelated states.

e From time to time, the workers all send their experienced transitions to the learner which updates the
policy using a batch of uncorrelated transitions.

o After the update, the workers use the new policy.
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https://ray.readthedocs.io/en/latest/rllib.html

Distributed RL

Worker 2

Worker 3

Worker n




Distributed RL

e Initialize global policy or value network 6.

e Initialize IV copies of the environment in different states.
e while True:

= for each worker in parallel:

o Copy the global network parameters 6 to each worker:
Hk — 6

o Initialize an empty transition buffer Dy,.

o Perform d steps with the worker on its copy of the environment.

o Append each transition (s, a, r, s') to the transition buffer.
= join(): wait for each worker to terminate.

= Gather the [V transition buffers into a single buffer D.

» Update the global network on D to obtain new weights 6.
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Distributed RL for value-based networks (DQN variants)

e Distributed learning can be used for any deep RL algorithm, including DQN variants.
e Distributed DQN variants include GORILA, IMPALA, APE-X, R2D2.

 “All" you need is one (or more) GPU for training the global network and N CPU cores for the workers.

e The workers fill the ERM much more quickly.

Sampled experience

Learner Replay
Updated priorities

Network Experiences

Actor

Network Initial priorities

Generated experience

Network parameters

Environment

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M., van Hasselt, H., et al. (2018). Distributed Prioritized Experience Replay. arXiv:1803.00933.
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Distributed RL

e In practice, managing the communication between the workers and the global network through processes
can be quite painful.

e There are some frameworks abstracting the dirty work, such as RLlIib.

OpenAl
Gym

Multi-Agent /
Hierarchical

Policy
Serving

Offline
Data

— (1) Application Support

Custom Algorithms

RLIib Algorithms

Source: https://ray.readthedocs.io/en/latest/rllib.html

— (2) Abstractions for RL

— (3) Distributed Execution
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https://ray.readthedocs.io/en/latest/rllib.html

Distributed RL

e Having multiple workers interacting with different environments is easy in simulation (Atari games).

e With physical environments, working in real time, it requires lots of money...

@ Large-scale data collection with an array of robots
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https://www.youtube.com/watch?v=iaF43Ze1oeI

2 - A3C: Asynchronous advantage actor-critic

Asynchronous Methods for Deep Reinforcement Learning

Volodymyr Mnih' VMNIH @ GOOGLE.COM
Adria Puigdoménech Badia' ADRIAP @ GOOGLE.COM
Mehdi Mirza':? MIRZAMOM @IRO.UMONTREAL.CA
Alex Graves' GRAVESA @ GOOGLE.COM
Tim Harley' THARLEY @ GOOGLE.COM
Timothy P. Lillicrap’ COUNTZERO @GOOGLE.COM
David Silver' DAVIDSILVER @ GOOGLE.COM
Koray Kavukcuoglu ' KORAYK@GOOGLE.COM

1 Google DeepMind
 Montreal Institute for Learning Algorithms (MILA), University of Montreal

Mnih, V., Badia, A. P, Mirza, M., Graves, A,, Lillicrap, T. P, Harley, T., et al. (2016). Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.01783
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A3C: Asynchronous advantage actor-critic

e Mnih et al. (2016) proposed the A3C algorithm (asynchronous advantage actor-critic).

e The stochastic policy 7y is produced by the actor with weights € and learned using :

VoT (0) = Eg,~ps,a,~m | Vo logmo(se,ar) (R — Vio(st))]

Actor (s, a) e The value of a state V,,(s) is produced by the critic

> a~ (s, a) with weights ¢, which minimizes the mse with the

Vo log (s, a) (R = Vi (s)) n-step return:
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. R = n-steps return

““““““““““““““ ﬂ 2
— A E(SO) — ‘LStNPH,CLtNﬂ'e [(R? R V@(St)) ]
> ( (5))? >V, (s) :
=V,
(s ;= Z ’)’k Perk+1 7" Vo(Stan)
k=0

e Both the actor and the critic are trained on batches of transitions collected using parallel workers.

e Two things are different from the general distributed approach: workers compute partial gradients and
updates are asynchronous.

Mnih, V., Badia, A. P, Mirza, M., Graves, A, Lillicrap, T. P, Harley, T., et al. (2016). Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.01783
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A3C: Asynchronous advantage actor-critic
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o def worker(f, ©):

= |nitialize empty transition buffer D. Initialize the environment to the last state visited by this worker.

= for n steps:

o Select an action using 7y, store the transition in the transition buffer.

= for each transition in D:
n—1
o Compute the n-step return in each state R’ = Z vk Piakel + V" V¢(8t+n)
k=0
= Compute policy gradient for the actor on the transition buffer:

1 n
df = VyJ(0) = - Z Vo logmo(st,ar) (R — Vio(st))

t=1

= Compute value gradient for the critic on the transition buffer:

dp=VoL(p) =~ S (R~ Vo(s1) VWi (se)

t=1

= return df, dy
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A2C: global networks

e Initialize actor 6 and critic .

e Initialize K workers with a copy of the environment.
o fort € |0, Tiotall:
= for K workers in parallel:
o db, dpy, = worker(6, @)
= join()
= Merge all gradients:

1 & 1 &
d@zE;de; d@zE;dgok

= Update the actor and critic using gradient ascent/descent:

0<—0+ndl; o< po—ndp
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A3C: Asynchronous advantage actor-critic

e The previous slide depicts A2C, the synchronous version of A3C.

o A2C synchronizes the workers (threads), i.e. it waits for the /X workers to finish their job before merging
the gradients and updating the global networks.

e A3C is asynchronous:

= the partial gradients are applied to the global networks as soon as they are available.

= No need to wait for all workers to finish their job.

e As the workers are not synchronized, this means that one worker could be copying the global networks 6
and ¢ while another worker is writing them.

e This is called a Hogwild! update: no locks, no semaphores. Many workers can read/write the same data.

e |t turns out NN are robust enough for this kind of updates.
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A3C: asynchronous updates

e Initialize actor @ and critic .
e Initialize K workers with a copy of the environment.

e for K workers in parallel:
= fort € |0, Tiotal|:
o Copy the global networks 6 and ¢.

o Compute partial gradients:
dfy, dyp, = worker(0, ©)
o Update the global actor and critic using the partial gradients:

0 < 0 + ndo

p < @ —ndpy
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A3C: Asynchronous advantage actor-critic

1

Worker 1
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Environment 1
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Policy 1(s)
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A3C does not use an experience replay memory as
DQN.

Instead, it uses multiple parallel workers to
distribute learning.

Each worker has a copy of the actor and critic
networks, as well as an instance of the
environment.

Weight updates are synchronized regularly though
a master network using Hogwild!-style updates

(every n = 9 steps!).

Because the workers learn different parts of the
state-action space, the weight updates are not very

correlated.

o It works best on shared-memory systems (multi-core) as communication costs between GPUs are huge.

Mnih, V., Badia, A. P, Mirza, M., Graves, A, Lillicrap, T. P, Harley, T., et al. (2016). Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.01783
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A3C : results
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Figure 1. Learning speed comparison for DQN and the new asynchronous algorithms on five Atan 2600 games. DQN was trained on
a single Nvidia K40 GPU while the asynchronous methods were trained using 16 CPU cores. The plots are averaged over 3 runs. In
the case of DQN the runs were for different seeds with fixed hyperparameters. For asynchronous methods we average over the best 5
models from 50 experiments with learning rates sampled from LogUni form(10~*, 10™%) and all other hyperparameters fixed.

e A3C set a new record for Atari games in 2016.

Method Training Time Mean Median
DQN 8 days on GPU 121.9% | 47.5%
Gorila 4 days, 100 machines | 215.2% | 71.3%
D-DQN 8 days on GPU 332.9% | 110.9%
Dueling D-DQN 8 days on GPU 343.8% | 117.1%
Prioritized DQN 8 days on GPU 463.6% | 127.6%
A3C, FF 1 day on CPU 344.1% | 68.2%
A3C, FF 4 days on CPU 496.8% | 116.6%
A3C, LSTM 4 days on CPU 623.0% | 112.6%

e The main advantage is that the workers gather

experience in parallel: training is much faster than
with DQN.

e LSTMs can be used to improve the performance.

Table 1. Mean and median human-normalized scores on 57 Atari
games using the human starts evaluation metric. Supplementary

Table SS3 shows the raw scores for all games.

Mnih, V., Badia, A. P, Mirza, M., Graves, A,, Lillicrap, T. P, Harley, T., et al. (2016). Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.01783
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A3C : results

e Learning is only marginally better with more threads:
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Mnih, V., Badia, A. P, Mirza, M., Graves, A, Lillicrap, T. P, Harley, T,, et al. (2016). Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.01783 21 /25



A3C: TORCS simulator

@ Asynchronous Methods for Deep Reinforcement Learning: TORCS
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https://www.youtube.com/watch?v=0xo1Ldx3L5Q

A3C: Labyrinth

@ Asynchronous Methods forDeep

—

einforcement Learning: Labyrinth
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https://www.youtube.com/watch?v=nMR5mjCFZCw

A3C: continuous control problems

@ Asynchronous Methods for Deep Reinforcement Learning: MuJoCo
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https://www.youtube.com/watch?v=Ajjc08-iPx8

Comparison with DQN

e A3C came up in 2016. A lot of things happened since then...

DQN

DDQN

Prioritized DDQN !
Dueling DDQN I ..

200% - A3C \[ W
Distributional DQN
Noisy DQN

Rainbow Hf‘

Wl

100%

Median human-normalized score

o/, Wl | 1 |
U% 7 44 100 200

Millions of frames

Figure 1: Median human-normalized performance across
57 Atar1 games. We compare our integrated agent (rainbow-
colored) to DQN (grey) and six published baselines. Note
that we match DQN’s best performance after 7M frames,
surpass any baseline within 44M frames, and reach sub-
stantially improved final performance. Curves are smoothed
with a moving average over 5 points.
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