
Deep Reinforcement Learning
Deep Deterministic Policy Gradient

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1 / 37

1 - Deterministic policy gradient theorem

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014). Deterministic Policy Gradient Algorithms. ICML 2 / 37

Problems with stochastic policy gradient methods
Actor-critic methods are strictly on-policy: the transitions used to train the critic must be generated by the
current version of the actor.

Past transitions cannot be reused to train the actor (no replay memory).

Domain knowledge cannot be used to guide the exploration.

The learned policy is stochastic. This
generates a lot of variance in the obtained returns,
therefore in the gradients.

This can greatly impair learning (bad convergence)
and slow it down (sample complexity).

We would not have this problem if the policy was
deterministic as in off-policy methods.

∇ J (θ) =θ E [∇ log π (s , a) (R −s ∼ρ ,a ∼π t θ t θ θ θ t t t V (s))]φ t

L(φ) = E [(R −s ∼ρ ,a ∼π t θ t θ t V (s))]φ t
2

π (s, a)θ

3 / 37

Deterministic policy gradient theorem
The objective function that we tried to maximize until now is :

i.e. we want the returns of all trajectories generated by the stochastic policy to be maximal.

It is equivalent to say that we want the value of all states
visited by the policy to be maximal:

a policy is better than another policy if its expected
return is greater or equal than that of for all states .

The objective function can be rewritten as:

where is now the state visitation distribution, i.e. how often a state will be visited by the policy .

J (θ) = E [R(τ)]τ∼ρ θ

π θ

π θ

π π′

π′ s

π > π ⇔′ V (s) >π V (s) ∀s ∈π′
S

Trajectories
generated by

Any other possible trajectory

Rewards

J (θ) =′ E [V (s)]s∼ρ θ

π θ

ρ θ π θ

4 / 37

Deterministic policy gradient theorem
The two objective functions:

and:

are not the same: has different values than .

However, they have a maximum for the same optimal policy and their gradient is the same:

If a change in the policy increases the return of all trajectories, it also increases the value of the visited
states.

Take-home message: their policy gradient is the same, we have the right to re-define the problem like this.

J (θ) = E [R(τ)]τ∼ρ θ

J (θ) =′ E [V (s)]s∼ρ θ

π θ

J J ′

π∗

∇ J (θ) =θ ∇ J (θ)θ
′

π θ

g = ∇ J (θ) =θ E [∇ V (s)]s∼ρ θ θ
π θ

5 / 37

Deterministic policy gradient theorem
When introducing Q-values, we obtain the following policy gradient:

This formulation necessitates to integrate overall possible actions.

Not possible with continuous action spaces.

The stochastic policy adds a lot of variance.

But let’s suppose that the policy is deterministic, i.e. it takes a single action in state .

We can note this deterministic policy , with:

The policy gradient becomes:

g = ∇ J (θ) =θ E [∇ V (s)] =s∼ρ θ θ
π θ E [∇ π (s, a)Q (s, a)]s∼ρ θ

a

∑ θ θ
π θ

s

μ (s)θ

μ : Sθ

s

→ A

→ μ (s)θ

g = ∇ J (θ) =θ E [∇ Q (s,μ (s))]s∼ρθ θ
μ θ

θ

6 / 37

Deterministic policy gradient theorem

The deterministic policy gradient is:

We can now use the chain rule to decompose the gradient of :

 means that we differentiate w.r.t. , and evaluate it in .

 is a variable, but is a deterministic value (constant).

 tells how the output of the policy network varies with the parameters of NN:

Automatic differentiation frameworks such as tensorflow can tell you that.

Deterministic
policy

Q-value

g = ∇ J (θ) =θ E [∇ Q (s,μ (s))]s∼ρθ θ
π θ

θ

Q (s,μ (s))μ θ
θ

∇ Q (s,μ (s)) =θ
μ θ

θ ∇ Q (s, a)∣ ×a
μ θ

a=μ (s)θ
∇ μ (s)θ θ

∇ Q (s, a)∣ a
μ θ

a=μ (s)θ
Qμ θ a μ (s)θ

a μ (s)θ

∇ μ (s)θ θ

7 / 37

Deterministic policy gradient theorem

For any MDP, the deterministic policy gradient is:

∇ J (θ) =θ E [∇ Q (s, a)∣ ×s∼ρ θ a
μθ

a=μ (s)θ
∇ μ (s)]θ θ

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014). Deterministic Policy Gradient Algorithms. ICML. 8 / 37

Deterministic policy gradient theorem with function approximation
As always, you do not know the true Q-value , because you search for the policy .

(Silver et al, 2014) showed that you can safely (without introducing any bias) replace the true Q-value with
an estimate , as long as the estimate minimizes the mse with the TD target:

We come back to an actor-critic architecture:

The deterministic actor selects a single action in state .

The critic estimates the value of that action.

Q (s, a)μ θ μ θ

Q (s, a)φ

Q (s, a) ≈φ Q (s, a)μ θ

L(φ) = E [(r(s,μ (s)) +s∼ρ θ θ γ Q (s ,μ (s)) −φ
′

θ
′ Q (s,μ (s)))]φ θ

2

μ (s)θ s

Q (s, a)φ

9 / 37

Deterministic Policy Gradient as an actor-critic architecture

Training the actor:

Training the critic:

Critic

Actor

∇ J (θ) =θ E [∇ μ (s) ×s∼ρ θ θ θ ∇ Q (s, a)∣]a φ a=μ (s)θ

L(φ) = E [(r(s,μ (s)) +s∼ρ θ θ γ Q (s ,μ (s)) −φ
′

θ
′ Q (s,μ (s)))]φ θ

2

10 / 37

DPG is off-policy
If you act off-policy, i.e. you visit the states using a behavior policy , you would theoretically need to
correct the policy gradient with importance sampling:

But your policy is now deterministic: the actor only takes the action with probability 1, not
.

The importance weight is 1 for that action, 0 for the other. You can safely sample states from a behavior
policy, it won’t affect the deterministic policy gradient:

The critic uses Q-learning, so it is also off-policy.

DPG is an off-policy actor-critic architecture!

s b

∇ J (θ) =θ E [∇ μ (s) ×s∼ρ b

a

∑
b(s, a)
π (s, a)θ

θ θ ∇ Q (s, a)∣]a φ a=μ (s)θ

a = μ (s)θ

π(s, a)

∇ J (θ) =θ E [∇ μ (s) ×s∼ρ b θ θ ∇ Q (s, a)∣]a φ a=μ (s)θ

11 / 37

2 - DDPG: Deep Deterministic Policy Gradient

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2015). Continuous control with deep reinforcement learning. CoRR. arXiv:1509.02971. 12 / 37

DDPG: Deep Deterministic Policy Gradient
As the name indicates, DDPG is the deep variant of DPG for continuous control.

It uses the DQN tricks to stabilize learning with deep networks:

As DPG is off-policy, an experience replay memory
can be used to sample experiences.

The actor learns using sampled transitions with
DPG.

The critic uses Q-learning on sampled
transitions: target networks can be used to cope
with the non-stationarity of the Bellman targets.

Contrary to DQN, the target networks are not updated every once in a while, but slowly integrate the
trained networks after each update (moving average of the weights):

Source: https://github.com/stevenpjg/ddpg-
aigym/blob/master/README.md

μ θ

Q φ

θ ←′ τθ + (1 − τ) θ′

φ ←′ τφ + (1 − τ)φ′

13 / 37

https://github.com/stevenpjg/ddpg-aigym/blob/master/README.md

DDPG: Deep Deterministic Policy Gradient

Actor Critic

A deterministic actor is good for learning (less variance), but not for exploring.

We cannot use -greedy or softmax, as the actor outputs directly the policy, not Q-values.

For continuous actions, an exploratory noise can be added to the deterministic action:

Ex: if the actor wants to move the joint of a robot by , it will actually be moved from or .

ϵ

a =t μ (s) +θ t ξ t

2o 2.1o 1.9o

Lilicrap et al. (2016). Continuous control with deep reinforcement learning. arXiv:1509.02971 14 / 37

Ornstein-Uhlenbeck stochastic process
In DDPG, an Ornstein-Uhlenbeck stochastic process is used to add noise to the continuous actions.

It is defined by a stochastic differential equation, classically used to describe Brownian motion:

The temporal mean of is , its amplitude is (exploration level), its speed is .

dx =t θ(μ − x)dt +t σdW with dW =t t N (0, dt)

x t μ = 0 θ σ

Uhlenbeck, G. E., and Ornstein, L. S. (1930). On the Theory of the Brownian Motion. Physical Review 36. doi:10.1103/PhysRev.36.823. 15 / 37

Parameter noise
Another approach to ensure exploration is to add
noise to the parameters of the actor at inference
time.

For the same input , the output will be
different every time.

The NoisyNet approach can be applied to any deep
RL algorithm to enable a smart state-dependent
exploration (e.g. Noisy DQN).

Source: https://towardsdatascience.com/whats-new-in-deep-learning-
research-knowledge-exploration-with-parameter-noise-98aef7ce84b2

θ

s t μ (s)θ t

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., et al. (2018). Parameter Space Noise for Exploration. arXiv:1706.01905. 16 / 37

https://towardsdatascience.com/whats-new-in-deep-learning-research-knowledge-exploration-with-parameter-noise-98aef7ce84b2

Initialize actor network and critic , target networks and , ERM of maximal size ,
random process .

for :

Select the action and store in the ERM.

For each transition in a minibatch of transitions randomly sampled from :

Compute the target value using target networks .

Update the critic by minimizing:

Update the actor by applying the deterministic policy gradient:

Update the target networks:

μ θ Q φ μ θ′ Q φ′ D N

ξ

t ∈ [0,T]max

a =t μ (s) +θ t ξ (s , a , r , s)t t t+1 t+1

(s , a , r , s)k k k k
′ K D

t =k r +k γ Q (s ,μ (s))φ′
k
′

θ′
k
′

L(φ) = (t −
K

1

k

∑ k Q (s , a))φ k k
2

∇ J (θ) =θ ∇ μ (s) ×
K

1

k

∑ θ θ k ∇ Q (s , a)∣ a φ k a=μ (s)θ k

θ ←′ τθ + (1 − τ) θ ; φ ←′ ′ τφ + (1 − τ)φ′

17 / 37

DDPG: Deep Deterministic Policy Gradient

Actor Critic

DDPG allows to learn continuous policies: there can be one tanh output neuron per joint in a robot.

The learned policy is deterministic: this simplifies learning as we do not need to integrate over the action
space after sampling.

Exploratory noise (e.g. Ohrstein-Uhlenbeck) has to be added to the selected action during learning in
order to ensure exploration.

Allows to use an experience replay memory, reusing past samples (better sample complexity than A3C).

Lilicrap et al. (2016). Continuous control with deep reinforcement learning. arXiv:1509.02971 18 / 37

DDPG: continuous control

Learning to move: DDPG Algorithm on Gym MuJoCoLearning to move: DDPG Algorithm on Gym MuJoCo
ShareShare

19 / 37

https://www.youtube.com/watch?v=iFg5lcUzSYU

3 - DDPG: learning to drive in a day

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J.-M., et al. (2018). Learning to Drive in a Day. arXiv:1807.00412 20 / 37

DDPG: learning to drive in a day

Learning to drive in a dayLearning to drive in a day
ShareShare

https://wayve.ai/blog/learning-to-drive-in-a-day-with-reinforcement-learning 21 / 37

https://www.youtube.com/watch?v=eRwTbRtnT1I
https://wayve.ai/blog/learning-to-drive-in-a-day-with-reinforcement-learning

DDPG: learning to drive in a day

The algorithm is DDPG with prioritized experience replay.

Training is live, with an on-board NVIDIA Drive PX2 GPU.

A simulated environment is first used to find the hyperparameters.

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J.-M., et al. (2018). Learning to Drive in a Day. arXiv:1807.00412 22 / 37

Autoencoders in deep RL
A variational autoencoder (VAE) is optionally use to pretrain the convolutional layers on random episodes.

Encoder

Decoder

Latent space
=

Feature vector
Function

approximator

Approximated
value

State

Reconstructed
state

23 / 37

DDPG: learning to drive in a day

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J.-M., et al. (2018). Learning to Drive in a Day. arXiv:1807.00412 24 / 37

4 - TD3 - Twin Delayed Deep Deterministic policy gradient

Fujimoto S, van Hoof H, Meger D. (2018). Addressing Function Approximation Error in Actor-Critic Methods. arXiv:180209477 25 / 37

TD3 - Twin Delayed Deep Deterministic policy gradient
DDPG suffers from several problems:

Unstable (catastrophic forgetting, policy collapse).

Brittleness (sensitivity to hyperparameters such as learning rates).

Overestimation of Q-values.

Policy collapse happens when the bias of the critic is too high for the actor. Example with A2C:

Oliver Lange (2019). Investigation of Model-Based Augmentation of Model-Free Reinforcement Learning Algorithms. MSc thesis, TU Chemnitz. 26 / 37

TD3 - Twin Delayed Deep Deterministic policy gradient
As any Q-learning-based method, DDPG overestimates Q-
values.

The Bellman target uses a
maximum over other values, so it is increasingly
overestimated during learning.

After a while, the overestimated Q-values disrupt training in
the actor.

Double Q-learning solves the problem by using the target network to estimate Q-values, but the value
network to select the greedy action in the next state:

The idea is to use two different independent networks to reduce overestimation.

This does not work well with DDPG, as the Bellman target uses a target actor
network that is not very different from the trained deterministic actor.

t = r + γ max Q(s , a)a′
′ ′

θ′

θ

L(θ) = E [(r +D γ Q (s´, argmax Q (s , a)) −θ′ a′ θ
′ ′ Q (s, a))]θ

2

t = r + γ Q (s ,μ (s))φ′
′

θ′
′

Fujimoto S, van Hoof H, Meger D. (2018). Addressing Function Approximation Error in Actor-Critic Methods. arXiv:180209477 27 / 37

TD3 - Twin Delayed Deep Deterministic policy gradient
TD3 uses two critics and (and target critics):

the Q-value used to train the actor will be the lesser of two
evils, i.e. the minimum Q-value:

One of the critic will always be less over-estimating than the other.
Better than nothing…

Using twin critics is called clipped double learning.

Both critics learn in parallel using the same target:

The actor is trained using the first critic only:

φ 1 φ 2

t = r + γ min(Q (s ,μ (s)),Q (s ,μ (s)))φ 1
′

′
θ′

′
φ 2

′
′

θ′
′

Source: https://funnytimes.com/wp-
content/uploads/2011/10/131986994517768.png

L(φ) =1 E[(t − Q (s, a))] ; L(φ) =φ 1
2

2 E[(t − Q (s, a))]φ 2
2

∇ J (θ) =θ E[∇ μ (s) ×θ θ ∇ Q (s, a)∣]a φ 1 a=μ (s)θ

28 / 37

https://funnytimes.com/wp-content/uploads/2011/10/131986994517768.png

TD3 - Twin Delayed Deep Deterministic policy gradient
Another issue with actor-critic architecture in general is that the critic is
always biased during training, what can impact the actor and ultimately
collapse the policy:

The critic should learn much faster than the actor in order to provide
unbiased gradients.

Increasing the learning rate in the critic creates instability, reducing the learning rate in the actor slows
down learning.

The solution proposed by TD3 is to delay the update of the actor, i.e. update it only every minibatches:

Train the critics and on the minibatch.

every steps:

Train the actor on the minibatch.

This leaves enough time to the critics to improve their prediction and provides less biased gradients to
the actor.

∇ J (θ) =θ E[∇ μ (s) ×θ θ ∇ Q (s, a)∣]a φ 1 a=μ (s)θ

Q (s, a) ≈φ 1 Q (s, a)μ θ

t

training

y

target networks

t *

d

φ 1 φ 2

d

θ

29 / 37

TD3 - Twin Delayed Deep Deterministic policy gradient
A last problem with deterministic policies is that they tend to always select the same actions
(overfitting).

For exploration, some additive noise is added to the selected action:

But this is not true for the Bellman targets, which use the deterministic action:

TD3 proposes to also use additive noise in the Bellman targets:

If the additive noise is zero on average, the Bellman targets will be correct on average (unbiased) but will
prevent overfitting of particular actions.

The additive noise does not have to be an Ornstein-Uhlenbeck stochastic process, but could simply be a
random variable:

μ (s)θ

a = μ (s) +θ ξ

t = r + γ Q (s ,μ (s))φ
′

θ
′

t = r + γ Q (s ,μ (s) +φ
′

θ
′ ξ)

ξ ∼ N (0, 1)

30 / 37

Initialize actor , critics , target networks , ERM , random processes .

for :

Select the action and store in the ERM.

For each transition in a minibatch sampled from :

Compute the target .

Update the critics by minimizing:

every steps:

Update the actor by applying the DPG using :

Update the target networks:

μ θ Q ,Q φ 1 φ 2 μ ,Q ,Q θ′ φ 1
′ φ 2

′ D ξ , ξ 1 2

t ∈ [0,T]max

a =t μ (s) +θ t ξ 1 (s , a , r , s)t t t+1 t+1

(s , a , r , s)k k k k
′ D

t =k r +k γ min(Q (s ,μ (s) +φ 1
′

k
′

θ′
k
′ ξ),Q (s ,μ (s) +2 φ 2

′
k
′

θ′
k
′ ξ))2

L(φ) =1 (t −
K

1

k

∑ k Q (s , a)) ; L(φ) =φ 1 k k
2

2 (t −
K

1

k

∑ k Q (s , a))φ 2 k k
2

d

Q φ 1

∇ J (θ) =θ ∇ μ (s) ×
K

1

k

∑ θ θ k ∇ Q (s , a)∣ a φ 1 k a=μ (s)θ k

θ ←′ τθ + (1 − τ) θ ; φ ←′
1
′ τφ +1 (1 − τ)φ ; φ ←1

′
2
′ τφ +2 (1 − τ)φ 2

′

31 / 37

TD3 - Twin Delayed Deep Deterministic policy gradient
TD3 introduces three changes to DDPG:

twin critics.

delayed actor updates.

noisy Bellman targets.

TD3 outperforms DDPG (but also PPO and SAC) on continuous control tasks.

Fujimoto S, van Hoof H, Meger D. (2018). Addressing Function Approximation Error in Actor-Critic Methods. arXiv:180209477 32 / 37

5 - D4PG: Distributed Distributional DDPG

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W., Horgan, D., TB, D., et al. (2018). Distributed Distributional Deterministic Policy Gradients. arXiv:1804.08617. 33 / 37

D4PG: Distributed Distributional DDPG
Deterministic policy gradient as in DDPG:

Distributional critic: The critic does not predict single Q-values , but the distribution of returns
 (as in Categorical DQN):

n-step returns (as in A3C):

Distributed workers: D4PG uses or copies of the actor to fill the ERM in parallel.

Prioritized Experience Replay (PER):

∇ J (θ) =θ E [∇ μ (s) ×s∼ρ b θ θ ∇ E[Z (s, a)]∣]a φ a=μ (s)θ

Q (s, a)φ

Z (s, a)φ

L(φ) = E [KL(T Z (s, a)∣∣Z (s, a))]s∈ρ b φ φ

T Z (s , a) =φ t t γ r +
k=0

∑
n−1

k
t+k+1 γ Z (s ,μ (s))n

φ t+n θ t+n

K = 32 64

P (k) =

 (∣δ ∣+ϵ)∑k k
α

(∣δ ∣+ϵ)k
α

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W., Horgan, D., TB, D., et al. (2018). Distributed Distributional Deterministic Policy Gradients. arXiv:1804.08617. 34 / 37

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W., Horgan, D., TB, D., et al. (2018). Distributed Distributional Deterministic Policy Gradients. arXiv:1804.08617. 35 / 37

D4PG: Parkour

D4PG WalkerD4PG Walker
ShareShare

36 / 37

https://www.youtube.com/watch?v=9kGdCjJtNls

Parkour networks
For Parkour tasks, the states cover two different informations: the terrain (distance to obstacles, etc.)
and the proprioception (joint positions of the agent).

They enter the actor and critic networks at different locations.

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W., Horgan, D., TB, D., et al. (2018). Distributed Distributional Deterministic Policy Gradients. arXiv:1804.08617. 37 / 37

