REEHS

UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE

CHEMNITZ

Deep Reinforcement Learning

Deep Deterministic Policy Gradient

Julien Vitay

Professur fur Kunstliche Intelligenz - Fakultat fir Informatik

1/37

1 - Deterministic policy gradient theorem

Deterministic Policy Gradient Algorithms

David Silver
DeepMind Technologies, London, UK

DAVID @ DEEPMIND.COM

Guy Lever GUY.LEVER@UCL.AC.UK

University College London, UK

Nicolas Heess, Thomas Degris, Daan Wierstra, Martin Riedmiller
DeepMind Technologies, London, UK

*@DEEPMIND.COM

Silver, D., Lever, G, Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014). Deterministic Policy Gradient Algorithms. ICML

2/37

Problems with stochastic policy gradient methods

Actor-critic methods are strictly on-policy: the transitions used to train the critic must be generated by the
current version of the actor.

VoT(0) = Egnpp,ai~ms | Vo log mo(se, a:) (Re — V(5¢))]

L(SO) — ﬂswpe,awﬂe [(Rt - Vw(st))2]

Past transitions cannot be reused to train the actor (no replay memory).

Domain knowledge cannot be used to guide the exploration.

The learned policy 74 (s, a) is stochastic. This

generates a lot of variance in the obtained returns,
therefore in the gradients.

This can greatly impair learning (bad convergence)
and slow it down (sample complexity).

We would not have this problem if the policy was
deterministic as in off-policy methods.

3/37

Deterministic policy gradient theorem

e The objective function that we tried to maximize until now is:

J(0) = Ervp, [R(7T)]

l.e. we want the returns of all trajectories generated by the stochastic policy 7y to be maximal.

e [tis equivalent to say that we want the value of all states Rewards >
visited by the policy gy to be maximal:

= a policy 7 is better than another policy 7’ if its expected T

‘e
.
O
g

: / P Trajectories
return is greater or equal than that of 7 for all states s. Wncrated by
.. 7T
/ Tr TN L - T,
T>m < Vi(s)>VT(s) VseS e

Any other possible trajectory

e The objective function can be rewritten as:

T'(0) = Esepy [V (s)]

where pg is now the state visitation distribution, i.e. how often a state will be visited by the policy 7y.

4/37

Deterministic policy gradient theorem

e The two objective functions:

J(0) = Erpy |[R(7)]

and:

T (0) = B, [V (5)]

are not the same: J has different values than 7.

e However, they have a maximum for the same optimal policy 7™ and their gradient is the same:

Vo T (0) = Ve T (6)

e |f a change in the policy 7y increases the return of all trajectories, it also increases the value of the visited
states.

e Take-home message: their policy gradient is the same, we have the right to re-define the problem like this.

g =V J(0) = Esp, [Vo V™ (3)]

5/37

Deterministic policy gradient theorem

When introducing Q-values, we obtain the following policy gradient:

g = Vo j(@) — 4:8’\’09 [VH Ve (3)] — 4:8Npe [Z Vo 779(37 CL) Qm (57 a)]

This formulation necessitates to integrate overall possible actions.

= Not possible with continuous action spaces.

= The stochastic policy adds a lot of variance.

But let's suppose that the policy is deterministic, i.e. it takes a single action in state s.

We can note this deterministic policy ug(s), with:

o - S—- A
s — po(s)
The policy gradient becomes:
g = Vy j(@) — ﬂsze [VH QM (37 MQ(S))]

6/37

Deterministic policy gradient theorem

S Deterministic a = L (S) Q-value QM@ (S, Lo (S))

| policy

Mo

e The deterministic policy gradient is:

g=VoT(0) =

] QHe

Csmpn Vo Q™ (55 116(5))

 We can now use the chain rule to decompose the gradient of Q"¢ (s, ug(s)):

Vo Q" (s, 10(8)) = Vo Q" (5,a)|azps(s) X Vo 1o(5)

e V. Q" (S,a)|q=pu,(s) means that we differentiate Q*? w.rt. a, and evaluate it in 15 ().

= ais a variable, but ug(s) is a deterministic value (constant).

e Vg 1g(s) tells how the output of the policy network varies with the parameters of NN:

» Automatic differentiation frameworks such as tensorflow can tell you that.

7137

Deterministic policy gradient theorem

For any MDP, the deterministic policy gradient is:

\Y’ j(@) — 4:s~p9 [Va Q'ue (87 a’) ‘a:,ue(s) X Vg “9(8)]

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014). Deterministic Policy Gradient Algorithms. ICML.

8 /37

Deterministic policy gradient theorem with function approximation

o As always, you do not know the true Q-value Q*¢ (s, a), because you search for the policy pg.

o (Silver et al, 2014) showed that you can safely (without introducing any bias) replace the true Q-value with
an estimate QQ,(s, a), as long as the estimate minimizes the mse with the TD target:

Q.,(s,a) ~ Q" (s,a)
L(Qp) = gpg [(’P(S, “9(3)) + 7Q90(3,7 :ue(sl)) — Qw(sa HG(S)))z]

e We come back to an actor-critic architecture:

= The deterministic actor 4 (s) selects a single action in state s.

= The critic @, (s, a) estimates the value of that action.

9/37

Deterministic Policy Gradient as an actor-critic architecture

critic (D, (S,a)

Training the actor:

(Q"(s,a) — Qyp(s,a))’

Vej(e) — ‘%Npg [VH ,UH(S) X VaQw(sva)‘azue(S)]

Training the critic:

L(p) = Esp, [(T(8, o (5))

Y Qy (s, 1o(s")) — Qu(s; po(8)))”!

DPG is off-policy

e If you act off-policy, i.e. you visit the states s using a behavior policy b, you would theoretically need to
correct the policy gradient with importance sampling:

. 7T9(8 CL)
VoT (0) = Esup, [D — 73" Vora(s) X VaQu(8,a)|azpy(s)]
— b(s,a)
e But your policy is now deterministic: the actor only takes the action a = ,ug(s) with probability 1, not
(s, a).
e The importance weight is 1 for that action, O for the other. You can safely sample states from a behavior
policy, it won't affect the deterministic policy gradient:

VHJ(H) — £s~pb [VH FLH(S) X Vano(Sva)‘a:pte(s)]

e The critic uses Q-learning, so it is also off-policy.

e DPG is an off-policy actor-critic architecture!

11 /37

2 - DDPG: Deep Deterministic Policy Gradient

Published as a conference paper at ICLR 2016

CONTINUOUS CONTROL WITH DEEP REINFORCEMENT
LEARNING

Timothy P. Lillicrap, Jonathan J. Hunt; Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver & Daan Wierstra
Google Deepmind

London, UK

{cmuntzerﬂ, JJhunt, apritzel, heess,
etom, tassa, davidsilver, wierstra} @ google.com

Lillicrap, T. P, Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2015). Continuous control with deep reinforcement learning. CoRR. arXiv:1509.02971.

12 /37

DDPG: Deep Deterministic Policy Gradient

e As the name indicates, DDPG is the deep variant of DPG for continuous control.

e It uses the DQN tricks to stabilize learning with deep networks:
e As DPG is off-policy, an experience replay memory
can be used to sample experiences.

rowwellacor o The actor (g learns using sampled transitions with

does at time t

| DPG.
o _ @ e The critic ng uses Q-learning on sampled
= J\\ Optimizes y @ transitions: target networks can be used to cope
Actions at 1 ~ . . .
Actor Network N pd o etwerk with the non-stationarity of the Bellman targets.
Hhhh HJH

Goal: Learn parameters of actor and critic enline
to improve actor performance

Source: https://github.com/stevenpjg/ddpg-
aigym/blob/master/README.md

e Contrary to DQN, the target networks are not updated every once in a while, but slowly integrate the
trained networks after each update (moving average of the weights):

0 710+ (1—71)0

o =T+ (1—7)¢

13 /37

https://github.com/stevenpjg/ddpg-aigym/blob/master/README.md

DDPG: Deep Deterministic Policy Gradient

r(s,.a, s’)

o A deterministic actor is good for learning (less variance), but not for exploring.

e We cannot use e-greedy or softmayx, as the actor outputs directly the policy, not Q-values.

e For continuous actions, an exploratory noise can be added to the deterministic action:

ar = ,UH(St) + &

o Ex: if the actor wants to move the joint of a robot by 2¢, it will actually be moved from 2.1° or 1.9°.

Lilicrap et al. (2016). Continuous control with deep reinforcement learning. arXiv:1509.02971

14 /37

Ornstein-Uhlenbeck stochastic process

e In DDPG, an Ornstein-Uhlenbeck stochastic process is used to add noise to the continuous actions.

e |t is defined by a stochastic differential equation, classically used to describe Brownian motion:

dr; = 0(u — x;)dt + odW, with dW; = N(0, dt)

e The temporal mean of x; is u = 0, its amplitude is 6 (exploration level), its speed is o.

Ornstein-Uhlenbeck Process

0.6

0.4 1

0.2 1

0.0

—0.2 -

—D.4 -

_D.E -

T T T T T T
0 200 400 600 800 1000

Uhlenbeck, G. E., and Ornstein, L. S. (1930). On the Theory of the Brownian Motion. Physical Review 36. doi:10.1103/PhysRev.36.823. 15/37

Parameter noise

e Another approach to ensure exploration is to add

Action Action
. noise to the parameters 6 of the actor at inference
{ }N _ time.
Qlse
o For the same input s;, the output tg(s;) will be
g A different every time.
Noise . e The NoisyNet approach can be applied to any deep
RL algorithm to enable a smart state-dependent
exploration (e.g. Noisy DQN).
A M k vy
Input Input

Source: https://towardsdatascience.com/whats-new-in-deep-learning-
research-knowledge-exploration-with-parameter-noise-98aef7ce84b2

Plappert, M., Houthooft, R., Dhariwal, P, Sidor, S., Chen, R. Y,, Chen, X., et al. (2018). Parameter Space Noise for Exploration. arXiv:1706.01905.

16 /37

https://towardsdatascience.com/whats-new-in-deep-learning-research-knowledge-exploration-with-parameter-noise-98aef7ce84b2

e |nitialize actor network g and critic ng; target networks g and Qgpf, ERM D of maximal size IV,
random process £.

o fort € |0, Tynax|:

Select the action a; = pg(s;) + & and store (S;, a;, 7411, S¢11) in the ERM.

For each transition (Sg, ag, Tk, s;) in a minibatch of K transitions randomly sampled from D:

o Compute the target value using target networks t;, = 7 + v Q. (S}, o (s3)).

Update the critic by minimizing:

L(p) = — > (tk — Qu(sk,ar))’
K

k

Update the actor by applying the deterministic policy gradient:

1
Vﬂj(e) — E Z VH,UH(S/C) X VCLQSO(Sk7 a’)‘az,ue(Sk)
k

Update the target networks: @' < 70 + (1 —71)0" ; @' + 1o+ (1 —7) ¢’

17 /37

DDPG: Deep Deterministic Policy Gradient

Critic (), (s,a)

r+7Qp (8, 1o(s")) — Qp(s, a)

r(s,.a, s’)

e DDPG allows to learn continuous policies: there can be one tanh output neuron per joint in a robot.

e The learned policy is deterministic: this simplifies learning as we do not need to integrate over the action
space after sampling.

o Exploratory noise (e.g. Ohrstein-Uhlenbeck) has to be added to the selected action during learning in
order to ensure exploration.

o Allows to use an experience replay memory, reusing past samples (better sample complexity than A3C).

Lilicrap et al. (2016). Continuous control with deep reinforcement learning. arXiv:1509.02971

18 /37

DDPG: continuous control

N ' Learning to move:

19/37

https://www.youtube.com/watch?v=iFg5lcUzSYU

3 - DDPG: learning to drive in a day

Learning to Drive in a Day

Alex Kendall Jetfrey Hawke David Janz Przemyslaw Mazur Daniele Reda

John-Mark Allen

Vinh-Dieu Lam Alex Bewley = Amar Shah

Kendall, A., Hawke, J., Janz, D., Mazur, P, Reda, D., Allen, J.-M,, et al. (2018). Learning to Drive in a Day. arXiv:1807.00412

20 /37

DDPG: learning to drive in a day

I:earnmg to drlve ina day

@

https://wayve.ai/blog/learning-to-drive-in-a-day-with-reinforcement-learning

21/37

https://www.youtube.com/watch?v=eRwTbRtnT1I
https://wayve.ai/blog/learning-to-drive-in-a-day-with-reinforcement-learning

DDPG: learning to drive in a day

Steering & Speed
Measurement

'y

‘:f'::::’b
-

e The algorithm is DDPG with prioritized experience replay.
e Training is live, with an on-board NVIDIA Drive PX2 GPU.

e A simulated environment is first used to find the hyperparameters.

\ State Vector

== — | Conv Layers |— Dense
’ / layers
/ \ Actor
Critic
Q Value |« Dense | _
layers) Q @
Reward State Action Steering & Speed
vector Command

Kendall, A., Hawke, J., Janz, D., Mazur, P, Reda, D., Allen, J.-M,, et al. (2018). Learning to Drive in a Day. arXiv:1807.00412

22 /37

Autoencoders in deep RL

e A variational autoencoder (VAE) is optionally use to pretrain the convolutional layers on random episodes.

State
S
Latent space Approximated
— ‘ ‘ ‘ Y ‘ ‘ ‘ S Function valuye
approximator
Feature vector ! PP ng (8)

() /Decoder

_ Reconstructed
| | state
- g

23 /37

DDPG: learning to drive in a day

—— ddpg = ddpg + vae

task solved

250 -+

200

150 +

100 -

o
=
1

=

0 10 20 30 40
Training episodes

Autonomous distance (metres)

(a) Algorithm results (b) Route

Fig. 3: Examples of different road environments randomly Fig. 4: Using a VAE with DDPG greatly improves data
generated for each episode in our lane following simulator. efficiency in training over DDPG from raw pixels, suggesting
We use procedural generation to randomly vary road texture, that state representation is an important consideration for
lane markings and road topology each episode. We train applying reinforcement learning on real systems. The 250m

using a forward facing driver-view image as input. driving route used for our experiments is shown on the right.
Training Test
Model Episodes Distance Time Meters per Disengagement # Disengagements
Random Policy - - - 7.35 34
Zero Policy - - - 22.7 11
Deep RL from Pixels 35 29088 m 37 min 143.2 1
Deep RL from VAE 11 1955 m 15 min - 0

TABLE I: Deep reinforcement learning results on an autonomous vehicle over a 250m length of road. We report the best
performance for each model. We observe the baseline RL agent can learn to lane follow from scratch, while the VAE variant
1s much more efficient, learning to succesfully drive the route after only 11 training episodes.

Kendall, A., Hawke, J., Janz, D., Mazur, P, Reda, D., Allen, J.-M., et al. (2018). Learning to Drive in a Day. arXiv:1807.00412 24 /37

4 - TD3 - Twin Delayed Deep Deterministic policy gradient

Addressing Function Approximation Error in Actor-Critic Methods

Scott Fujimoto'! Herke van Hoof > David Meger '

Fujimoto S, van Hoof H, Meger D. (2018). Addressing Function Approximation Error in Actor-Critic Methods. arXiv:180209477

25/37

TD3 - Twin Delayed Deep Deterministic policy gradient

e DDPG suffers from several problems:

= Unstable (catastrophic forgetting, policy collapse).
= Brittleness (sensitivity to hyperparameters such as learning rates).
= Overestimation of Q-values.

e Policy collapse happens when the bias of the critic is too high for the actor. Example with A2C:

A2C Pacman hunt 16 Envirﬂnments

I
N
wn

|
7
o

|
~J
Ln

|

|

I
=
O
-

|

—12.51

—15.0-

Average Rewards

—17.5-

—20.0 -

—22.5 -

0.0 0.2 0.4 0.6 0.8 1.0
Training steps leb6

Oliver Lange (2019). Investigation of Model-Based Augmentation of Model-Free Reinforcement Learning Algorithms. MSc thesis, TU Chemnitz. 26 /37

TD3 - Twin Delayed Deep Deterministic policy gradient

As any Q-learning-based method, DDPG overestimates Q- 400
values.
300
The Bellman targett = r + v maxy Q(s’,a’) uses a 3
(o
maximum over other values, so it is increasingly = 200
overestimated during learning. S
=
After a while, the overestimated Q-values disrupt training in < 100 = CDQ -e True CDQ
the actor. DDPG True DDPG
0

0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

Double Q-learning solves the problem by using the target network 8’ to estimate Q-values, but the value
network 6 to select the greedy action in the next state:

L(0) =Ep[(r +v Qo (s’,argmax, Qy(s',a')) — Qo(s,a))’]

The idea is to use two different independent networks to reduce overestimation.

This does not work well with DDPG, as the Bellman targett = r 4+ v Q. (s, o (")) uses a target actor
network that is not very different from the trained deterministic actor.

Fujimoto S, van Hoof H, Meger D. (2018). Addressing Function Approximation Error in Actor-Critic Methods. arXiv:180209477

27 1 37

TD3 - Twin Delayed Deep Deterministic policy gradient

e TD3 uses two critics ¢ and > (and target critics):

s the Q-value used to train the actor will be the lesser of two

evils, i.e. the minimum Q-value:

t=r+~ min(Qy (s, uo(s)), Quy (s, po (s)))

e One of the critic will always be less over-estimating than the other.

Better than nothing...

e Using twin critics is called clipped double learning.

e Both critics learn in parallel using the same target:

L(p1) =E[(t - Qp(5,0))°] 3

e The actor is trained using the first critic only:

The Lesser of Two Evils by EricPerlin

If I'm elected, I'll do far
less damage than my
opponent would dal

anm

ww Funnytirnes. ¢

Source: https://funnytimes.com/wp-
content/uploads/2011/10/131986994517768.png

‘E[(t o Q@z (37 a))2]

Vej(e) — 4:[V9M0(3) X VaQsol(,) :ue(S)]

28 /137

https://funnytimes.com/wp-content/uploads/2011/10/131986994517768.png

TD3 - Twin Delayed Deep Deterministic policy gradient

Another issue with actor-critic architecture in general is that the criticis target networks

always biased during training, what can impact the actor and ultimately £
collapse the policy:

Vo (0) = E[Vops(s) X VaQey, (8, a)|a=ps(s)] '
Ry, (s,a) = QM (s,a) ‘,_1
The critic should learn much faster than the actor in order to provide training

unbiased gradients.

Increasing the learning rate in the critic creates instability, reducing the learning rate in the actor slows
down learning.

The solution proposed by TD3 is to delay the update of the actor, i.e. update it only every d minibatches:

= Train the critics o1 and @9 on the minibatch.

= every d steps:

o Train the actor @ on the minibatch.

This leaves enough time to the critics to improve their prediction and provides less biased gradients to
the actor.

29 /37

TD3 - Twin Delayed Deep Deterministic policy gradient

e A last problem with deterministic policies is that they tend to always select the same actions ,ug(s)
(overfitting).

e For exploration, some additive noise is added to the selected action:

a = pg(s) + ¢

e But this is not true for the Bellman targets, which use the deterministic action:

t =1+ ng(sla ,UO(S/))

e TD3 proposes to also use additive noise in the Bellman targets:

t=1+7Qu(s,pmy(s) + &)

o If the additive noise is zero on average, the Bellman targets will be correct on average (unbiased) but will
orevent overfitting of particular actions.

e The additive noise does not have to be an Ornstein-Uhlenbeck stochastic process, but could simply be a
random variable:

30/37

e Initialize actor uy, critics Q,, , Q,, target networks pg, Q. , Q,, ERM D, random processes &1, &».

e fort € [0, Tinax]:

Select the action a; = ug(s;) + &1 and store (s¢, az,T¢11, Str1) in the ERM.

For each transition (sg, ax, Tk, S,) in a minibatch sampled from D:
))) 9k

o Compute the target t;, = 7% + v min(Q (s}, po (s1,) + &2), Qy. (8, por (s3,) + &2)).
Update the critics by minimizing:
1 1
Lip1) = 2= Dot = Qui(se,ar)’ 5 Llp2) = = D (t — Quu sk, ar))’

k

every d steps:

o Update the actor by applying the DPG using Q%:

k

1
Vo T (0) = —= D Vona(sk) X VaQp, (5 @)y (s
k

o Update the target networks:

0 10+ (1—7)0"; o) 711+ (1 —7)p1; 3 < Tps + (1 —7) ¢y

/

31/37

TD3 - Twin Delayed Deep Deterministic policy gradient

e TD3 introduces three changes to DDPG:

» twin critics.

= delayed actor updates.

= noisy Bellman targets.

e TD3 outperforms DDPG (but also PPO and SAC) on continuous control tasks.

Average Return

= 0

m TD3

3500
3000
2500
2000
1500
1000

DDPG

== our DDPG

= PPO
5000

4000
3000
2000

1000

m TRPO

m ACKTR

SAC

0.0 0.2

0.4 0.6 0.8 1.0 0.0
Time steps (1e6)

(a) HalfCheetah-v1

0.2 0.4

Time steps (1e6)

0.6

0.8

(b) Hopper-vl

_4
e e e
-
S -6
°
oc
> -8
©
o
< _10
—12
0.0 02 04 06 0.8 1.0

Time steps (1e6)

(e) Reacher-vl

1000
900
800

700| 7
600| ¥

500
400

0.2

0.4

0.6 0.8 1.0 0.0
Time steps (1e6)

(c) Walker2d-vl

0.0

0.2

0.4 0.6
Time steps (1€6)

0.8

1.0

(f) InvertedPendulum-v1

10000

8000/

6000

4000

2000

0

0.4 0.6 0.8 1.0
Time steps (1e6)

(d) Ant-v1

0.0 0.2 0.4 0.6

Timé steps f1 eb)

0.8

1.0

(g) InvertedDoublePendulum-v 1

Fujimoto S, van Hoof H, Meger D. (2018). Addressing Function Approximation Error in Actor-Critic Methods. arXiv:180209477

5 - D4PG: Distributed Distributional DDPG

Published as a conterence paper at ICLR 2018

DISTRIBUTED DISTRIBUTIONAL DETERMINISTIC
PoOLICY GRADIENTS

Gabriel Barth-Maron;” Matthew W. Hoffman;” David Budden, Will Dabney,
Dan Horgan, Dhruva TB, Alistair Muldal, Nicolas Heess, Timothy Lillicrap
DeepMind

[London, UK

{gabrielbm, mwhoffman, budden, wdabney, horgan, dhruvat,

alimuldal, heess, cmuntzerm}@gmmgle.cmm

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W., Horgan, D., TB, D., et al. (2018). Distributed Distributional Deterministic Policy Gradients. arXiv:1804.08617.

33 /37

D4PG: Distributed Distributional DDPG

e Deterministic policy gradient as in DDPG:

VHJ(H) — 4:SN,0b [VH,UH(S) X Va 43[290(37&)”&:#9(8)]

» Distributional critic: The critic does not predict single Q-values Q, (s, @), but the distribution of returns
Z,(8,a) (as in Categorical DQN):

L(p) = Esep, [KL(T Z,(s,0a)||2,(s,a))

e n-step returns (as in A3C):

n—1

T Z,(8¢,0at) = Z YV Pkt + " Zo(St4ns 10 (St4n))
k—0

o Distributed workers: D4PG uses K = 32 or 64 copies of the actor to fill the ERM in parallel.

» Prioritized Experience Replay (PER): P(k) = z(‘(zTc‘Sﬁ:)a
k

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W., Horgan, D., TB, D., et al. (2018). Distributed Distributional Deterministic Policy Gradients. arXiv:1804.08617.

34 /37

Episode Returns Episode Returns Episode Returns

Episode Returns

1000

Acrobot(Swingup) Acrobot(Swingup Sparse) Cartpole(Swingup)

Cartpole(Swingup Sparse)

Swimmer(Swimmere)

o 6 8 10 12 0 2 o] 8 10 12 0 2 d 7} 8 10 12 0 2 u B 8 10

Training Time (Hours) Training Time (Hours) Training Time (Hours) Training Time (Hours)
- - - D3PG, Non-Prioritized, N =1 D3PG, Prioritized, N = 5 - - - D4PG, Prioritized, N = 1
—— D3PG, Non-Prioritized, N = 5 DAPG, Non-Prioritized, N = 1 — D4PG, Prioritized, N =5
D3PG, Prioritized, N = 1 D4PG, Non-Prioritized, N=5 - DDPG

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W., Horgan, D., TB, D., et al. (2018). Distributed Distributional Deterministic Policy Gradients. arXiv:1804.08617.

35/37

D4PG: Parkour

>

P
Time 00:18.93

Reward 0.0446

https://www.youtube.com/watch?v=9kGdCjJtNls

Parkour networks

e For Parkour tasks, the states cover two different informations: the terrain (distance to obstacles, etc.)
and the proprioception (joint positions of the agent).

e They enter the actor and critic networks at different locations.

Standard Networks Parkour Networks

actor critic actor "
critic

network torso a1 hetwork é forso

¢ el

i i i

] f

))

Xterrain XKterrain

A e
S
&

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W., Horgan, D., TB, D., et al. (2018). Distributed Distributional Deterministic Policy Gradients. arXiv:1804.08617. 37 /37

