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On-policy and off-policy methods
DQN and DDPG are off-policy methods, so we can use a replay memory.

They need less samples to converge as they re-use past experiences (sample efficient).

The critic is biased (overestimation), so learning is unstable and suboptimal.

A3C is on-policy, we have to use distributed learning.

The critic is less biased, so it learns better policies (optimality).

It however need a lot of samples (sample complexity) as it must collect transitions with the current
learned policy.

All suffer from parameter brittleness: choosing the right hyperparameters for a task is extremely difficult.

For example a learning rate of  might work, but not .

Other hyperparameters: size of the ERM, update frequency of the target networks, training frequency.

Can’t we do better?

10−5 1.1 ∗ 10−5
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Where is the problem with on-policy methods?
The policy gradient is unbiased only when the critic  accurately approximates the true Q-values
of the current policy.

If transitions are generated by a different (older) policy , the policy gradient will be wrong.

We could correct the policy gradient with importance sampling:

This is the off-policy actor-critic (Off-PAC) algorithm of Degris et al. (2012).

It is however limited to linear approximation, as:

the critic  needs to very quickly adapt to changes in the policy (deep NN are very slow
learners).

the importance weight  can have a huge variance.

Q  (s, a)φ

  

∇  J(θ)θ = E  [∇  log π  (s, a)Q (s, a)]s∼ρ  ,a∼π  θ θ θ θ
π  θ

≈ E  [∇  log π  (s, a)Q  (s, a)]s∼ρ  ,a∼π  θ θ θ θ φ

b

∇  J(θ) ≈θ E  [  ∇  log π  (s, a)Q  (s, a))]s∼ρ  ,a∼bb b(s, a)
π  (s, a)θ

θ θ φ

Q  (s, a)φ

 

b(s,a)
π  (s,a)θ

Degris, T., White, M., and Sutton, R. S. (2012). Linear Off-Policy Actor-Critic. in Proceedings of the 2012 International Conference on Machine Learning. arXiv:1205.4839. 3 / 42



Is gradient ascent the best optimization method?
Once we have an estimate of the policy gradient:

we can update the weights  in the direction of that gradient:

(or some variant of it, such as RMSprop or Adam).

We search for the smallest parameter change (controlled by the learning rate ) that produces the
biggest positive change in the returns.

Choosing the learning rate  is extremely difficult in deep RL:

If the learning rate is too small, the network converges very slowly, requiring a lot of samples to
converge (sample complexity).

If the learning rate is too high, parameter updates can totally destroy the policy (instability).

The learning rate should adapt to the current parameter values in order to stay in a trust region.
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Trust regions and gradients

Source: 

The policy gradient tells you in which direction of the parameter space  the return is increasing the
most.

If you take too big a step in that direction, the new policy might become completely bad (policy collapse).

Once the policy has collapsed, the new samples will all have a small return: the previous progress is lost.

This is especially true when the parameter space has a high curvature, which is the case with deep NN.

https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9

θ
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Policy collapse
Policy collapse is a huge problem in deep RL: the network starts learning correctly but suddenly collapses
to a random agent.

For on-policy methods, all progress is lost: the network has to relearn from scratch, as the new samples
will be generated by a bad policy.

Oliver Lange (2019). Investigation of Model-Based Augmentation of Model-Free Reinforcement Learning Algorithms. MSc thesis, TU Chemnitz. 6 / 42



Trust regions and gradients

Source: 

Trust region optimization searches in the neighborhood of the current parameters  which new value
would maximize the return the most.

This is a constrained optimization problem: we still want to maximize the return of the policy, but by
keeping the policy as close as possible from its previous value.

https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9

θ
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Trust regions and gradients

Source: 

The size of the neighborhood determines the safety of the parameter change.

In safe regions, we can take big steps. In dangerous regions, we have to take small steps.

Problem: how can we estimate the safety of a parameter change?

https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9
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1 - TRPO: Trust Region Policy Optimization

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust Region Policy Optimization. 1889–1897. .http://proceedings.mlr.press/v37/schulman15.html 9 / 42
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TRPO: Trust Region Policy Optimization
We want to maximize the expected return of a policy , which is equivalent to the Q-value of every state-
action pair visited by the policy:

Let’s note  the current value of the parameters of the policy .

(Kakade and Langford, 2002) have shown that the expected return of a policy  is linked to the expected
return of the current policy  with:

where

is the advantage of taking the action  and thereafter following , compared to following the current
policy .

The return under any policy  is equal to the return under , plus how the newly chosen actions in the
rest of the trajectory improves (or worsens) the returns.
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TRPO: Trust Region Policy Optimization
If we can estimate the advantages and maximize them, we can find a new policy  with a higher return
than the current one.

By definition, , so the policy maximizing  has positive advantages and is better than 
.

Maximizing the advantages ensures monotonic improvement: the new policy is always better than the
previous one. Policy collapse is not possible!

The problem is that we have to take samples  from : we do not know it yet, as it is what we
search. The only policy at our disposal to estimate the advantages is the current policy .

We could use importance sampling to sample from , but it would introduce a lot of variance (but see
PPO later):
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TRPO: Trust Region Policy Optimization
In TRPO, we are adding a constraint instead:

the new policy  should not be (very) different from .

the importance sampling weight  will not be very different from 1, so we can omit it.

Let’s define a new objective function :

The only difference with  is that the visited states  are now sampled by the current policy .

This makes the expectation tractable: we know how to visit the states, but we compute the advantage of
actions taken by the new policy in those states.
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TRPO: Trust Region Policy Optimization
Previous objective function:

New objective function:

It is “easy” to observe that the new objective function has the same value in :

and that its gradient w.r.t.  is the same in :

At least locally, maximizing  is exactly the same as maximizing .

 is called a surrogate objective function: it is not what we want to maximize, but it leads to the
same result locally.

J (θ) = J (θ  ) +old E  [A (s, a)]s∼ρ  ,a∼π  θ θ

π  θ  old

J  (θ) =θ  old J (θ  ) +old E  [A (s, a)]s∼ρ  ,a∼π  θ  old θ

π  θ  old

θ  old

J  (θ  ) =θ  old old J (θ  )old

θ θ  old

∇  J  (θ)∣  =θ θ  old θ=θ  old ∇  J (θ)∣  θ θ=θ  old

J  (θ)θ  old J (θ)

J  (θ)θ  old

13 / 42



TRPO: Trust Region Policy Optimization

Surrogate objective
Real objective
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TRPO: Trust Region Policy Optimization
How big a step can we take when maximizing ?  and  must be close from each other for
the approximation to stand.

The first variant explored in the TRPO paper is a constrained optimization approach (Lagrange
optimization):

The KL divergence between the distributions  and  must be below a threshold .

This version of TRPO uses a hard constraint:

We search for a policy  that maximizes the expected return while staying within the trust region
around .
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TRPO: Trust Region Policy Optimization
The second approach regularizes the objective function with the KL divergence:

where  is a regularization parameter controlling the importance of the soft constraint.

This surrogate objective function is a lower bound of the initial objective :

1. The two objectives have the same value in :

2. Their gradient w.r.t  are the same in :

3. The surrogate objective is always smaller than the real objective, as the KL divergence is positive:
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TRPO: Trust Region Policy Optimization

Unconstrained objective
Real objective

Surrogate objective
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TRPO: Trust Region Policy Optimization
The policy  maximizing the surrogate objective :

has a higher expected return than :

is very close to :

but the parameters  are much closer to the
optimal parameters .

The version with a soft constraint necessitates a prohibitively small learning rate in practice.

The implementation of TRPO uses the hard constraint with Lagrange optimization, what necessitates
using conjugate gradients optimization, the Fisher Information matrix and natural gradients: very complex
to implement…

However, there is a monotonic improvement guarantee: the successive policies can only get better over
time, no policy collapse! This is the major advantage of TRPO compared to the other methods: it always
works, although very slowly.
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2 - PPO: Proximal Policy Optimization

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal Policy Optimization Algorithms. arXiv:1707.06347. 19 / 42



PPO: Proximal Policy Optimization
Let’s take the unconstrained objective function of TRPO:

 does not depend on , so we only need to maximize the advantages:

In order to avoid sampling action from the unknown policy , we can use importance sampling with the
current policy:

with  being the importance sampling weight.

But the importance sampling weight  introduces a lot of variance, worsening the sample
complexity.

Is there another way to make sure that  is not very different from , therefore reducing the variance
of the importance sampling weight?
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PPO: Proximal Policy Optimization
The solution introduced by PPO is simply to clip the importance sampling weight when it is too different
from 1:

For each sampled action , we use the minimum between:

the TRPO unconstrained objective with IS .

the same, but with the IS weight clipped between  and .
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PPO: Proximal Policy Optimization

If the advantage  is positive (better
action than usual) and:

the IS is higher than , we use 
.

otherwise, we use .

If the advantage  is negative (worse
action than usual) and:

the IS is lower than , we use 
.

otherwise, we use .
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PPO: Proximal Policy Optimization

This avoids changing too much the policy between two updates:

Good actions ( ) do not become much more likely than before.

Bad actions ( ) do not become much less likely than before.

A (s, a) >π  θ  old 0

A (s, a) <π  θ  old 0

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal Policy Optimization Algorithms. arXiv:1707.06347. 23 / 42



PPO: Proximal Policy Optimization
The PPO clipped objective ensures than the importance sampling weight stays around one, so the new
policy is not very different from the old one. It can learn from single transitions.

The advantage of an action can be learned using any advantage estimator, for example the n-step
advantage:

Most implementations use Generalized Advantage Estimation (GAE, Schulman et al., 2015).

PPO is therefore an actor-critic method (as TRPO).

PPO is on-policy: it collects samples using distributed learning (as A3C) and then applies several
updates to the actor and critic.
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∑
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Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2015). High-Dimensional Continuous Control Using Generalized Advantage Estimation. arXiv:1506.02438. 24 / 42



PPO: Proximal Policy Optimization
Initialize an actor  and a critic  with random weights.

while not converged :

for  workers in parallel:

Collect  transitions using .

Compute the advantage  of each transition using the critic .

for  epochs:

Sample  transitions  from the ones previously collected.

Train the actor to maximize the clipped surrogate objective.

Train the critic to minimize the advantage.
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PPO: Proximal Policy Optimization
PPO is an on-policy actor-critic PG algorithm, using distributed learning.

Clipping the importance sampling weight allows to avoid policy collapse, by staying in the trust region
(the policy does not change much between two updates).

The monotonic improvement guarantee is very important: the network will always find a (local) maximum
of the returns.

PPO is much less sensible to hyperparameters than DDPG (brittleness): works often out of the box with
default settings.

It does not necessitate complex optimization procedures like TRPO: first-order methods such as SGD
work (easy to implement).

The actor and the critic can share weights (unlike TRPO), allowing to work with pixel-based inputs,
convolutional or recurrent layers.

It can use discrete or continuous action spaces, although it is most efficient in the continuous case. Go-
to method for robotics.

Drawback: not very sample efficient.
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PPO: Proximal Policy Optimization
Implementing PPO necessitates quite a lot of tricks (early stopping, MPI).

OpenAI Baselines or SpinningUp provide efficient implementations:

https://spinningup.openai.com/en/latest/algorithms/ppo.html

https://github.com/openai/baselines/tree/master/baselines/ppo2

import gym 
from spinup import ppo 
import tensorflow as tf 

env_fn = lambda : gym.make('LunarLander-v2') 

ppo(env_fn=env_fn,  
    ac_kwargs={'hidden_sizes': [64,64],  
               'activation': tf.nn.relu},  
    steps_per_epoch=5000, epochs=250)
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PPO : Mujoco control

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal Policy Optimization Algorithms. arXiv:1707.06347. 28 / 42



PPO : Parkour

DeepMind Learns ParkourDeepMind Learns Parkour
ShareShare
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PPO : Robotics
Check more robotic videos at: https://openai.com/blog/openai-baselines-ppo/
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PPO: dexterity learning

Learning DexterityLearning Dexterity
ShareShare
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PPO: ChatGPT

Source: https://openai.com/blog/chatgpt 32 / 42
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3 - OpenAI Five: Dota 2

OpenAI FiveOpenAI Five
ShareShare

https://openai.com/projects/five/ 34 / 42
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Why is Dota 2 hard?

Feature Chess Go Dota 2

Total number of moves 40 150 20000

Number of possible actions 35 250 1000

Number of inputs 70 400 20000

https://openai.com/projects/five/ 35 / 42
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OpenAI Five: Dota 2
OpenAI Five is composed of 5 PPO networks (one per player), using 128,000 CPUs and 256 V100 GPUs.

https://openai.com/projects/five/ 36 / 42
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OpenAI Five: Dota 2
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OpenAI Five: Dota 2
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OpenAI Five: Dota 2

https://d4mucfpksywv.cloudfront.net/research-covers/openai-five/network-architecture.pdf
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OpenAI Five: Dota 2
The agents are trained by self-play. Each worker
plays against:

the current version of the network 80% of the
time.

an older version of the network 20% of the
time.

Reward is hand-designed using human heuristics:

net worth, kills, deaths, assists, last hits…

The discount factor  is annealed from 0.998 (valuing future rewards with a half-life of 46 seconds) to
0.9997 (valuing future rewards with a half-life of five minutes).

Coordinating all the resources (CPU, GPU) is actually the main difficulty:

Kubernetes, Azure, and GCP backends for Rapid, TensorBoard, Sentry and Grafana for monitoring…

γ
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4 - ACER: Actor-Critic with Experience Replay

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., et al. (2017). Sample Efficient Actor-Critic with Experience Replay. arXiv:1611.01224. 41 / 42



ACER: Actor-Critic with Experience Replay
ACER is the off-policy version of PPO:

Off-policy actor-critic architecture (using experience replay),

Retrace estimation of values (Munos et al. 2016),

Importance sampling weight truncation with bias correction,

Efficient trust region optimization (TRPO),

Stochastic Dueling Network (SDN) in order to estimate both  and .

The performance is comparable to PPO. It works sometimes better than PPO on some environments,
sometimes not.

Just FYI…

Q  (s, a)φ V  (s)φ

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare, M. G. (2016). Safe and Efficient Off-Policy Reinforcement Learning. arXiv:1606.02647. 42 / 42


