REEHS

UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE

CHEMNITZ

Deep Reinforcement Learning
Natural gradients (TRPO, PPO)

Julien Vitay

Professur fur Kunstliche Intelligenz - Fakultat fir Informatik

1/42

On-policy and off-policy methods

e DQN and DDPG are off-policy methods, so we can use a replay memory.

= They need less samples to converge as they re-use past experiences (sample efficient).

= The critic is biased (overestimation), so learning is unstable and suboptimal.

e A3C is on-policy, we have to use distributed learning.

= The critic is less biased, so it learns better policies (optimality).

= It however need a lot of samples (sample complexity) as it must collect transitions with the current
learned policy.

o All suffer from parameter brittleness: choosing the right hyperparameters for a task is extremely difficult.

e For example a learning rate of 10™° might work, but not 1.1 % 107°.
e Other hyperparameters: size of the ERM, update frequency of the target networks, training frequency.

e Can't we do better?

2/42

Where is the problem with on-policy methods?

e The policy gradient is unbiased only when the critic an (s, a) accurately approximates the true Q-values
of the current policy.

VHJ(H) — ESNPH,GNWG V9 lOg 7T9(37 a’) Qm (37 a)]
s~ pgany :VH log 779(37 a) Qo (37 a)]

X

e If transitions are generated by a different (older) policy b, the policy gradient will be wrong.

e We could correct the policy gradient with importance sampling:

mo(s, a)

b(s,a)

VoJ(0) = Eypyams Vg logmy(s,a) Q,(s,a))]

e This is the off-policy actor-critic (Off-PAC) algorithm of Degris et al. (2012).

e Itis however limited to linear approximation, as:

= the critic Q) (s, a) needs to very quickly adapt to changes in the policy (deep NN are very slow
learners).

(5,0)

= the importance weight 729(8 o) can have a huge variance.

Degris, T., White, M., and Sutton, R. S. (2012). Linear Off-Policy Actor-Critic. in Proceedings of the 2012 International Conference on Machine Learning. arXiv:1205.4839.

3/42

Is gradient ascent the best optimization method?

e Once we have an estimate of the policy gradient:

VHJ(H) — 4:8%09,&“/7@ [VH log 779(37 CL) QSO(’S? CL)]

we can update the weights @ in the direction of that gradient:

0 < 0+nVyJ(0)
(or some variant of it, such as RMSprop or Adam).
» We search for the smallest parameter change (controlled by the learning rate) that produces the

biggest positive change in the returns.

e Choosing the learning rate 7 is extremely difficult in deep RL:

= |f the learning rate is too small, the network converges very slowly, requiring a lot of samples to
converge (sample complexity).

= If the learning rate is too high, parameter updates can totally destroy the policy (instability).

e The learning rate should adapt to the current parameter values in order to stay in a trust region.

4/42

Trust regions and gradients

Source: https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9

e The policy gradient tells you in which direction of the parameter space @ the return is increasing the
most.

o If you take too big a step in that direction, the new policy might become completely bad (policy collapse).

e Once the policy has collapsed, the new samples will all have a small return: the previous progress is lost.

e This is especially true when the parameter space has a high curvature, which is the case with deep NN.

5742

https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9

Policy collapse

e Policy collapse is a huge problem in deep RL: the network starts learning correctly but suddenly collapses
to a random agent.

e For on-policy methods, all progress is lost: the network has to relearn from scratch, as the new samples
will be generated by a bad policy.

A2C Pacman hunt 16 Environments

—10.0

-12.5

—-15.0

-17.5- ' TH'”

—20.0 |

Average Rewards

—22.5-

0.0 0.2 0.4 0.6 0.8 1.0
Training steps leb

Oliver Lange (2019). Investigation of Model-Based Augmentation of Model-Free Reinforcement Learning Algorithms. MSc thesis, TU Chemnitz. 6/ 42

Trust regions and gradients

¥ &

'-‘-'-..'..
"

& . - e .?'
- B~ “'-u-:I 1 __,h

T

= i

S o —== fL -
e e #1

.

=

| Line _search Trust region
(like gradient ascent)

Source: https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-abee04eeeee9

e Trust region optimization searches in the neighborhood of the current parameters 6 which new value
would maximize the return the most.

e This is a constrained optimization problem: we still want to maximize the return of the policy, but by
keeping the policy as close as possible from its previous value.

7142

https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9

Trust regions and gradients

Source: https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9

e The size of the neighborhood determines the safety of the parameter change.

e In safe regions, we can take big steps. In dangerous regions, we have to take small steps.
e Problem: how can we estimate the safety of a parameter change?

8/42

https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9

1 - TRPO: Trust Region Policy Optimization

Trust Region Policy Optimization

John Schulman JOSCHU@EECS.BERKELEY.EDU
Sergey Levine SLEVINE@EECS.BERKELEY.EDU
Philipp Moritz PCMORITZ@EECS.BERKELEY.EDU
Michael Jordan JORDAN @CS.BERKELEY.EDU
Pieter Abbeel PABBEEL @ CS.BERKELEY.EDU

University of California, Berkeley, Department ot Electrical Engineering and Computer Sciences

Schulman, J., Levine, S., Abbeel, P, Jordan, M., and Moritz, P. (2015). Trust Region Policy Optimization. 1889-1897. http://proceedings.milr.press/v37/schulman15.html.

9/42

http://proceedings.mlr.press/v37/schulman15.html

TRPO: Trust Region Policy Optimization

o We want to maximize the expected return of a policy 7y, which is equivalent to the Q-value of every state-
action pair visited by the policy:

J(0) = s g, arg Q™ (s,a)]

e Let's note 6,14 the current value of the parameters of the policy 7y, .

o (Kakade and Langford, 2002) have shown that the expected return of a policy 7y is linked to the expected
return of the current policy 7y, ,, with:

J(0) = T (Oo1a) + Esmpyammy [A™0 (5, a)]
where
A" (37 a) — QQ(Sa a’) — ngld (37 a)

is the advantage of taking the action (s, a) and thereafter following 7y, compared to following the current
policy ..

e The return under any policy @ is equal to the return under 6,14, plus how the newly chosen actions in the
rest of the trajectory improves (or worsens) the returns.

Kakade, S., and Langford, J. (2002). Approximately Optimal Approximate Reinforcement Learning. Proc. 19th International Conference on Machine Learning, 267-274. 10/ 42

TRPO: Trust Region Policy Optimization

e |f we can estimate the advantages and maximize them, we can find a new policy 7y with a higher return
than the current one.

L(0) = Espyanmy [A™0 (5, 0)]

e By definition, £(0,q) = 0, so the policy maximizing £(6) has positive advantages and is better than

TTho1q -

enew — aI'ginaxy E(H) — j(enew) > j(eold)

e Maximizing the advantages ensures monotonic improvement: the new policy is always better than the
previous one. Policy collapse is not possible!

o The problem is that we have to take samples (s, a) from 7y: we do not know it yet, as it is what we
search. The only policy at our disposal to estimate the advantages is the current policy g, .

e We could use importance sampling to sample from 7g_, ., but it would introduce a lot of variance (but see
PPO later):

mo(s, a)

001 (57 a)

[:((9) — 4:8N,0901d ATy | [Aol (37 a)]

11/ 42

TRPO: Trust Region Policy Optimization

e In TRPO, we are adding a constraint instead:

» the new policy mg_ . should not be (very) different from my,_. .

T Onew (S,G)

= the importance sampling weight 78,1 (5,0)

will not be very different from 1, so we can omit it.

o Let’s define a new objective function Jy,,, (0):

Jb.14 (9) =J (001(1) T aszeold ,arTY [Am(’ld (3 ; a)]

o The only difference with 7 (0) is that the visited states s are now sampled by the current policy 7rg,,,

e This makes the expectation tractable: we know how to visit the states, but we compute the advantage of
actions taken by the new policy in those states.

12 /42

TRPO: Trust Region Policy Optimization

e Previous objective function:

J(0) = T (0oa) + s~ pg 0~y (A" (s, a)]

e New objective function:

T4 (0) — j(eold) T 4:3N,0901d AT [Am()ld (37 a’)]

e Itis “easy” to observe that the new objective function has the same value in 0,4:

Jo..4(0o1a) = T (6o1a)

and that its gradient w.r.t. @ is the same in f14:
Vt9&7901d (9)‘9:‘901d = Vg j(g)‘ezeold

o Atleast locally, maximizing Jy, . (@) is exactly the same as maximizing 7 ().

o Ju...(0) is called a surrogate objective function: it is not what we want to maximize, but it leads to the
same result locally.

13/42

TRPO: Trust Region Policy Optimization

Real objective

7(6)
\ / j901d (‘9)

Surrogate objective

b 0ol1d

TRPO: Trust Region Policy Optimization

 How big a step can we take when maximizing Js,,, (6)? 7g and 7y, must be close from each other for
the approximation to stand.

e The first variant explored in the TRPO paper is a constrained optimization approach (Lagrange
optimization):

mGaX jHold (0) — j(eold) {'SNPGOM,CLN’]TQ [Amdd (37 CI,)]

such that: Dy, (g, ||mg) < 6

» The KL divergence between the distributions 7rg_, and g must be below a threshold 0.

e This version of TRPO uses a hard constraint;

= We search for a policy 7y that maximizes the expected return while staying within the trust region
around 7rg_. .

15/42

TRPO: Trust Region Policy Optimization

e The second approach regularizes the objective function with the KL divergence:

mgLX ,C(@) — j9old (9) — C Dxr, (7‘-901d ‘ |779)

where C'is a regularization parameter controlling the importance of the soft constraint.

o This surrogate objective function is a lower bound of the initial objective 7 (6):

1. The two objectives have the same value in 6,14

‘C(‘gold) — jé’old (‘901(1) — C Dkp, (Weold

T930) = T (Oold)

2. Their gradient w.r.t @ are the same in 0,4:

VHL(H)‘Hzé’old — Vej(e)‘ezeold

3. The surrogate objective is always smaller than the real objective, as the KL divergence is positive:

j(@) > L7901d (9) — CDKL(T‘-HOIdHT‘-O)

16 /42

TRPO: Trust Region Policy Optimization

Real objective

70 9
\ / jQOld()

Unconstrained objective

Surrogate objective

TRPO: Trust Region Policy Optimization

The policy g maximizing the surrogate objective L(0) = Jy,,,(0) — C Dxr.(mg,,||76):
 has a higher expected return than my_.: Real objective Unconstrained objective
J(0)
\ j@old (‘9)

J(0) > T (0o1q) /

e isvery closetomy .:

Surrogate objective

79) ~ 0 L(6)

Dxr (76,

o but the parameters 6 are much closer to the / 9" 9 0.1 N ;
optimal parameters 6*.

e The version with a soft constraint necessitates a prohibitively small learning rate in practice.

e The implementation of TRPO uses the hard constraint with Lagrange optimization, what necessitates
using conjugate gradients optimization, the Fisher Information matrix and natural gradients: very complex

to implement...

e However, there is a monotonic improvement guarantee: the successive policies can only get better over
time, no policy collapse! This is the major advantage of TRPO compared to the other methods: it always
works, although very slowly.

18 /42

2 - PPO: Proximal Policy Optimization

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov

OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

Schulman, J., Wolski, F., Dhariwal, P, Radford, A., and Klimoyv, O. (2017). Proximal Policy Optimization Algorithms. arXiv:1707.06347.

PPO: Proximal Policy Optimization

e Let's take the unconstrained objective function of TRPO:

T4 (9) — j(gold) T {'SNPHOId a4~y [AMOM (37 a)]

e J(6o1a) does not depend on 6, so we only need to maximize the advantages:

[’(9) — 4:3”\’,0901(1 ,aA™~TY [Amdd (37 a)]

e In order to avoid sampling action from the unknown policy 7y, we can use importance sampling with the
current policy:

L(0) = Espy a~my,, [P(8,a) AT (s,a)]

with p(s,a) = WZES(:ZL) being the importance sampling weight.

e But the importance sampling weight p(s, a) introduces a lot of variance, worsening the sample
complexity.

e Is there another way to make sure that 7y is not very different from mg_,, therefore reducing the variance
of the importance sampling weight?

20 /42

PPO: Proximal Policy Optimization

e The solution introduced by PPO is simply to clip the importance sampling weight when it is too different
from 1:

L(0) = Es~py a~m,, (min(p(s,a) A" (s,a),clip(p(s,a),1 —€,1+€) A" (s,a))]

o For each sampled action (s, a), we use the minimum between:

= the TRPO unconstrained objective with IS p(s, a) A™u (s, a).

= the same, but with the IS weight clipped between1 — eand 1 + €.

clip(p(s,a),1 —¢€,1 + ¢€)

A

21/42

PPO: Proximal Policy Optimization

A>0 A<
pour e 1 .
7 CLIP |
« If the advantage A™.u (s, a) is positive (better ~ * If the advantage A™eu (s, a) is negative (worse

action than usual) and: action than usual) and:

= the IS is higher than 1 + ¢, we use (1 + = the ISis lowerthan 1 — ¢, we use (1 —

€) A™%u (s, a). €) ATl (s, a).
= otherwise, we use p(s,a) A™ou (s, a). = otherwise, we use p(s,a) A™u (s, a).

Schulman, J., Wolski, F., Dhariwal, P, Radford, A., and Klimov, O. (2017). Proximal Policy Optimization Algorithms. arXiv:1707.06347.

22142

PPO: Proximal Policy Optimization

" LG‘LIF

A>0 A<0

1—61

LG‘LIF

—
1 1+4¢€

e This avoids changing too much the policy between two updates:

= Good actions (A™u (s,a) > 0) do not become much more likely than before.

= Bad actions (A% (s,a) < 0) do not become much less likely than before.

Schulman, J., Wolski, F., Dhariwal, P, Radford, A., and Klimov, O. (2017). Proximal Policy Optimization Algorithms. arXiv:1707.06347.

23 /42

PPO: Proximal Policy Optimization

The PPO clipped objective ensures than the importance sampling weight stays around one, so the new
policy is not very different from the old one. It can learn from single transitions.

L(0) = Espy a~my, [min(p(s,a) A™u(s,a),clip(p(s,a),1 —€,1+¢€) A™u(s,a))]

The advantage of an action can be learned using any advantage estimator, for example the n-step
advantage:

n—1

A" (84, a1) = Z YV Pk + " Vo(stin) — Vi (8¢)
k=0

Most implementations use Generalized Advantage Estimation (GAE, Schulman et al., 2015).
PPO is therefore an actor-critic method (as TRPO).

PPO is on-policy: it collects samples using distributed learning (as A3C) and then applies several
updates to the actor and critic.

Schulman, J., Moritz, P, Levine, S., Jordan, M., and Abbeel, P. (2015). High-Dimensional Continuous Control Using Generalized Advantage Estimation. arXiv:1506.02438.

24 142

PPO: Proximal Policy Optimization

* Initialize an actor 7y and a critic V/, with random weights.

e while not converged :
= for /N workers in parallel:

o Collect I’ transitions using 7.

o Compute the advantage A, (s, a) of each transition using the critic V.

= for K epochs:

o Sample M transitions D from the ones previously collected.

o Train the actor to maximize the clipped surrogate objective.

L(0) = Esa-p[min(p(s,a) Ay(s,a),clip(p(s,a),1 — €,1+€) Ay(s,a))

o Train the critic to minimize the advantage.

L(p) = Eyaup[(Ap(s,a))?]

251/42

PPO: Proximal Policy Optimization

PPO is an on-policy actor-critic PG algorithm, using distributed learning.

Clipping the importance sampling weight allows to avoid policy collapse, by staying in the trust region
(the policy does not change much between two updates).

The monotonic improvement guarantee is very important: the network will always find a (local) maximum
of the returns.

PPO is much less sensible to hyperparameters than DDPG (brittleness): works often out of the box with
default settings.

It does not necessitate complex optimization procedures like TRPO: first-order methods such as SGD
work (easy to implement).

The actor and the critic can share weights (unlike TRPO), allowing to work with pixel-based inputs,
convolutional or recurrent layers.

It can use discrete or continuous action spaces, although it is most efficient in the continuous case. Go-
to method for robotics.

Drawback: not very sample efficient.

26/42

PPO: Proximal Policy Optimization

o Implementing PPO necessitates quite a lot of tricks (early stopping, MPI).

e OpenAl Baselines or SpinningUp provide efficient implementations:

https://spinningup.openai.com/en/latest/algorithms/ppo.html

https://github.com/openai/baselines/tree/master/baselines/ppo?2

import gym
from spinup import ppo
import tensorflow as tf

env_fn = lambda : gym.make('LunarLander-v2')

ppo(env_fn=env_fn,
ac_kwargs={'hidden_sizes': [64,64],
'activation': tf.nn.relu},
steps_per_epoch=5000, epochs=250)

27 142

https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://github.com/openai/baselines/tree/master/baselines/ppo2

PPO : Mujoco control

HalfCheetah-v1 Hopper-v1 InvertedDoublePendulum-v1 InvertedPendulum-v1
1000
2000 2500 8000
| 800
1500 2000 6000
1000 1500 600
4000
500 1000 400
0 500 2000 200
=500 0 0 0
0 1000000 0 1000000 0 1000000 0 1000000
Reacher-v1 Swimmer-v1 Walker2d-v1
120 — ‘
=20 A2C + Trust Region
100 3000 —— CEM
=40 80 —— PPO (Clip)
——— Vanilla PG, Adaptive
60 60 2000 P
—— TRPO
-80] 40
20 1000
=100
0 /\/“*WW
"""'"_"""""'-""'""‘""‘\f'"""_
=120 0
0 1000000 0 1000000 0 1000000

Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million
timesteps.

Schulman, J., Wolski, F., Dhariwal, P, Radford, A., and Klimov, O. (2017). Proximal Policy Optimization Algorithms. arXiv:1707.06347. 28 / 42

PPO : Parkour

: DeepMind Learns Parkour

https://www.youtube.com/watch?v=faDKMMwOS2Q

PPO : Robotics

Check more robotic videos at: https://openai.com/blog/openai-baselines-ppo/

30/42

https://openai.com/blog/openai-baselines-ppo/

PPO: dexterity learning

| earning Dexteri

https://www.youtube.com/watch?v=jwSbzNHGflM

PPO: ChatGPT

Step 1

Collect demonstration data
and train a supervised policy.

Step 2

Collect comparison data and
train a reward model.

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A prompt is
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This datais used to
fine-tune GPT-3.5
with supervised
learning.

~
L

Explain reinforcement

learning to a 6 year old.

&

VA4

We give treats and

punishments to teach...

A prompt and 1'7
.
several model Exolain ro
xplain reinforcement
outputs are learning to a 6 year old.
sampled.
In I;e;rr‘;?r:;imhgnt Explain rewards...
agentis...
In machine We gi_ve treats and
learning... pun':;aTﬁntSto
A labeler ranks the
outputs from best
to worst. 0-0-0-0
RM
This data is used LRI
. o 6 _°o
to train our \}52{/
reward model.
0-0-0-0

Source: https://openai.com/blog/chatgpt

The policy generates
an output.

A new prompt is W
sampled from Write a story
the d ataset. about otters.
The PPO model is . o
initialized from the ./)?j\\.
supervised policy. W

Once upon atime...

The reward model .R'V'.
calculates a reward LI\,
for the output. N
The reward is used
to update the r

k

policy using PPO.

32 /42

https://openai.com/blog/chatgpt

twitter:ai-memes

3 - OpenAl Five

OpenAl Five

-

.1;.\

—

: Dota 2

https://openai.com/projects/five/

34 /42

https://www.youtube.com/watch?v=eHipy_j29Xw
https://openai.com/projects/five/

Why is Dota 2 hard?

Long Time
Horizons

¢ Most actions in Dota 2 have minor impact individually but contributed to the team’s strategy.
¢ The game is about 20,000 moves long(compared to an average 40 moves of a chess match).

Partially Observed
Stage

¢ At any given time, a team can only see a small area around them.
¢ Dota 2 strategies require making inference based on incomplete data.

CO nt I n u 0 u S ACt I 0 n ¢ Each hero is face with about 1000 actions each tick (compared to about 35 in chess)

¢ Actions can have completely different objectives such as targeting an enemy or improving the

S p a ce position on the ground

' « The observati in Dota 2 includes het ts such as h ¢
CO nt I n u 0 u S buﬁ;n:r:?el:s? :ECBCE IN UO1a < INClUudes heterogenous components sucn as neroes, treesm
Observation Space

¢ At any given point, the observations in a Dota 2 game can be quantified as 20,000 floating point
numbers. The same quantifications for Chess and Go are about 70 and 400 numbers respectivey

Feature Chess Go Dota2
Total number of moves 40 150 20000
Number of possible actions 35 250 1000

Number of inputs 70 400 20000

https://openai.com/projects/five/

35/42

https://openai.com/projects/five/

OpenAl Five: Dota 2

e OpenAl Five is composed of 5 PPO networks (one per player), using 128,000 CPUs and 256 V100 GPUs.

Optimizer + Connected Rollout Workers (x256)

Rollout Workers

~500 CPUs

Run episodes Optimizer

-« 80% against current bot 1p100 GPU o

* 20% against mixture of past versions Rollout Compute Gradients 3::"2"&95 . Cradiont

Randomized game settings Sa[:::;'es * Proximal Policy Optimization average gradients Updates
with Adam at every step.

Push data every 60s of gameplay » Batches of 4096 observations

 Discount rewards across the 60s using « BPTT over 16 observations

generalized advantage estimation

Model Parameters

(10M floats)

Eval Workers

~2500 CPUs
Play in various environments Model
for evaluation Parameters

* vs hardcoded “scripted” bot

* VS previous similar bots (used to
compute Trueskill)

* vs self (for humans to watch
and analyze)

https://openai.com/projects/five/

36/42

https://openai.com/projects/five/

OpenAl Five: Dota 2

CPUs

GPUs

Experience
collected

Size of observation

Observations per
second of gameplay

Batch size

Batches per minute

OPENAI 1V1
BOT

60,000 CPU

cores on
Azure

256 KB0 GPUs
on Azure

~300 years
per day

~5.5 kB

10

8,388,608
observations

~20

OPENAI FIVE

128,000 preemptible CPU cores on

GCP

256 P100 GPUs on GCP

~180 years per day (~900 years per day
counting each hero separately)

~56.8 kB

7.5

1,048,576 observations

https://openai.com/projects/five/

37 /42

https://openai.com/projects/five/

OpenAl Five: Dota 2

Scene 1: Attacking Mid v

ACTIONS Qel=R13a0 plely i

Observed Units

MY EEER
o | 4 | | 4 { h l':.-) A
b ES M EN YO ¥
r"'
##t Radiant

Level 11 § Mana 830 /1020

ltems Abilities

I G e, Y T

Modifiers
9 palle—
e, @ 23

On units of type Hero we also observe: absolute position; health
over last 12 frames; attacking or attacked by hero; projectiles time
to impact; movement, attack, and regeneration speed; current

animation; time since last attack; number of deaths; and using or
phasing an ability.

https://openai.com/projects/five/

38/42

https://openai.com/projects/five/

OpenAl Five: Dota 2

—
’ —
ey [T ST S, e
| | Sor 2l allied and hherves.
| N
concat |
 FCsela
FCorelu
concat e
FC FC R
g v vy [max-poot | | stice 064] |) [stice 0:64 | | max-pool | | shice0:64 | |) (stcens6s] | J | stice 064 |
| concat Aovuilable Actioms
| FC-nell | e
g = — »| Softmax |—o{ Sample/Argmax |—+ Sclected Action
Lre | (Softmas }—o{Sample/ Argmax }—{ Ot X |
{rc | o Softmax | Sample/Argmax |—+| Offst ¥
{ rc } o Softmax |—{ Sample/Argmax |—= Move X
g B +{ Softmax |—+| Sample/ Argmax j— Move ¥
] e W W
g L, S [] o softmax |—{Sample/Argmas }—+ Doty |
| Unit Aention Keys |
of v} -41:?} o Softmay |—e] Sample/Argmas —e Tapcilna

https://ddmucfpksywv.cloudfront.net/research-covers/openai-five/network-architecture.pdf

39/42

https://d4mucfpksywv.cloudfront.net/research-covers/openai-five/network-architecture.pdf

OpenAl Five: Dota 2

e The agents are trained by self-play. Each worker
plays against:

= the current version of the network 80% of the
time.

= an older version of the network 20% of the
time.

 Reward is hand-designed using human heuristics:

= net worth, kills, deaths, assists, last hits...

Might die soon Will get a kill soon Game Milestones

e The discount factor 7y is annealed from 0.998 (valuing future rewards with a half-life of 46 seconds) to
0.9997 (valuing future rewards with a half-life of five minutes).

e Coordinating all the resources (CPU, GPU) is actually the main difficulty:

= Kubernetes, Azure, and GCP backends for Rapid, TensorBoard, Sentry and Grafana for monitoring...

40/ 42

4 - ACER: Actor-Critic with Experience Replay

Published as a conference paper at ICLR 2017

SAMPLE EFFICIENT ACTOR-CRITIC WITH
EXPERIENCE REPLAY

Ziyu Wang Victor Bapst Nicolas Heess
DeepMind DeepMind DeepMind
ziyul@google.com vbapstl@google.com heessl@google.com
Volodymyr Mnih Remi Munos Koray Kavukcuoglu
DeepMind DeepMind DeepMind
vmnih@google.com Munos(@google.com korayk@google.com
Nando de Freitas

DeepMind, CIFAR, Oxford University
nandodefreitas@google.com

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuogly, K., et al. (2017). Sample Efficient Actor-Critic with Experience Replay. arXiv:1611.01224.

411/42

ACER: Actor-Critic with Experience Replay

e ACER is the off-policy version of PPO:

= Off-policy actor-critic architecture (using experience replay),
= Retrace estimation of values (Munos et al. 2016),
» Importance sampling weight truncation with bias correction,

= Efficient trust region optimization (TRPO),
= Stochastic Dueling Network (SDN) in order to estimate both @, (s, a) and V,,(s).

e The performance is comparable to PPO. It works sometimes better than PPO on some environments,
sometimes not.

e JustFYl.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare, M. G. (2016). Safe and Efficient Off-Policy Reinforcement Learning. arXiv:1606.02647.

42142

