
Deep Reinforcement Learning
Maximum Entropy RL

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1 / 29

1 - Soft RL

2 / 29

Hard RL
All methods seen so far search the optimal policy that maximizes the return:

The optimal policy is deterministic and greedy by definition.

Exploration is ensured externally by :

applying -greedy or softmax on the Q-values (DQN),

adding exploratory noise (DDPG),

learning stochastic policies that become deterministic over time (A3C, PPO).

Is “hard” RL, caring only about exploitation, always the best option?

π =∗ arg E [γ r(s , a , s)]
π

max π

t

∑ t
t t t+1

π (s) =∗ arg Q (s, a)
a

max ∗

ϵ

3 / 29

Need for soft RL
The optimal policy is only greedy for a MDP, not
obligatorily for a POMDP.

Games like chess are POMDPs: you do not know
what your opponent is going to play (missing
information).

If you always play the same moves (e.g. opening
moves), your opponent will adapt and you will end
up losing systematically.

Variety in playing is beneficial in POMDPs: it can
counteract the uncertainty about the environment.

Source: https://www.chess.com/article/view/announcing-the-chess-com-
gif-maker

4 / 29

https://www.chess.com/article/view/announcing-the-chess-com-gif-maker

Need for soft RL
There are sometimes more than one way to collect rewards, especially with sparse rewards.

If exploration decreases too soon, the RL agent will “overfit” one of the paths.

If one of the paths is suddenly blocked, the agent would have to completely re-learn its policy.

It would be more efficient if the agent had learned all possibles paths, even if some of them are less
optimal.

Source: https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

5 / 29

https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

Need for soft RL
Softmax policies allow to learn multimodal policies, but only for discrete action spaces.

In continuous action spaces, we would have to integrate over the whole action space, what is not
tractable.

Exploratory noise as in DDPG only leads to unimodal policies: greedy action plus some noise.

π(s, a) =

 expQ(s, b)/τ∑b

expQ(s, a)/τ

Source: https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

6 / 29

https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

2 - Continuous stochastic policies

7 / 29

Gaussian policies
The easiest to implement a stochastic policy with a neural network is a Gaussian policy.

Suppose that we want to control a robotic arm with degrees
of freedom.

An action is a vector of joint displacements:

A Gaussian policy considers the vector to be sampled from the normal distribution .

The mean and standard deviation are vectors that can
be the output of the actor neural network with parameters .

Sampling an action from the normal distribution is done through
the reparameterization trick:

where comes from the standard normal distribution.

n

a

a = [Δθ 1 Δθ 2 … Δθ n]
T

a N (μ (s),σ (s))θ θ

μ (s)θ σ (s)θ

θ

a = μ (s) +θ σ (s) ξθ

ξ ∼ N (0, 1)
https://medium.com/@vittoriolabarbera/continuous-
control-with-a2c-and-gaussian-policies-mujoco-
pytorch-and-c-4221ec8ba024

8 / 29

https://medium.com/@vittoriolabarbera/continuous-control-with-a2c-and-gaussian-policies-mujoco-pytorch-and-c-4221ec8ba024

Gaussian policies
The good thing with the normal distribution is that we know its pdf:

When estimating the policy gradient (REINFORCE, A3C, PPO, etc):

the log-likelihood is a simple function of and :

so we can easily compute its gradient w.r.t and apply backpropagation:

π (s, a) =θ exp −

 2πσ (s)θ
2

1
2σ (s)θ

2
(a − μ (s))θ

2

∇ J(θ) =θ E [∇ log π (s, a)ψ]s∼ρ ,a∼π

π
θ θ θ

log π (s, a)θ μ (s)θ σ (s)θ

log π (s, a) =θ − −
2σ (s)θ

2
(a − μ (s))θ

2

 log 2πσ (s)
2
1

θ
2

θ

∇ log π (s, a) =μ (s)θ θ ∇ log π (s, a) =
σ (s)θ

2

a − μ (s)θ
σ (s)θ θ −

σ (s)θ
3

(a − μ (s))θ
2

σ (s)θ

1

9 / 29

Gaussian policies
A Gaussian policy samples actions from the normal distribution , with and

 being the output of the actor.

The score can be obtained easily using the output
of the actor:

The rest of the score (and) is the problem of
tensorflow/pytorch.

This is the same reparametrization trick used in variational autoencoders to allow backpropagation to
work through a sampling operation.

Beta distributions are an even better choice to parameterize stochastic policies (Chou et al, 2017).

N (μ (s),σ (s))θ θ μ (s)θ

σ (s)θ

a = μ (s) +θ σ (s) ξθ

∇ log π (s, a)θ θ

∇ log π (s, a) =μ (s)θ θ

σ (s)θ
2

a − μ (s)θ

∇ log π (s, a) =σ (s)θ θ −
σ (s)θ

3

(a − μ (s))θ
2

σ (s)θ

1

∇ μ (s)θ θ ∇ σ (s)θ θ

Source:
https://medium.com/@vittoriolabarbera/continuous-
control-with-a2c-and-gaussian-policies-mujoco-
pytorch-and-c-4221ec8ba024

Chou et al. (2017). Improving Stochastic Policy Gradients in Continuous Control with Deep Reinforcement Learning using the Beta Distribution. ICML. 10 / 29

https://medium.com/@vittoriolabarbera/continuous-control-with-a2c-and-gaussian-policies-mujoco-pytorch-and-c-4221ec8ba024

3 - Maximum Entropy RL

11 / 29

Soft policies
Although stochastic, Gaussian policies are still unimodal policies: they mostly sample actions around the
mean and the variance decreases to 0 with learning.

If we want a multimodal policy that learns different solutions, we need to learn a Softmax distribution
(Gibbs / Boltzmann) over the action space.

How can we do that when the action space is continuous?

μ (s)θ σ (s)θ

Source: https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

12 / 29

https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

Maximum Entropy RL
A solution to force the policy to be multimodal is to force it to be as stochastic as possible by maximizing
its entropy.

Instead of searching for the policy that “only” maximizes the returns:

we search for the policy that maximizes the returns while being as stochastic as possible:

This new objective function defines the maximum entropy RL framework.

The entropy of the policy regularizes the objective function: the policy should still maximize the returns,
but stay as stochastic as possible depending on the parameter .

Entropy regularization can always be added to PG methods such as A3C.

It is always possible to fall back to hard RL by setting to 0.

π =∗ arg E [γ r(s , a , s)]
π

max π

t

∑ t
t t t+1

π =∗ arg E [γ r(s , a , s) +
π

max π

t

∑ t
t t t+1 αH(π(s))]t

α

α

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. (2017). Reinforcement Learning with Deep Energy-Based Policies. arXiv:1702.08165 13 / 29

Entropy of a policy
The entropy of a policy in a state is defined by the expected negative log-likelihood of the policy:

For a discrete action space:

For a continuous action space:

The entropy necessitates to sum or integrate the
self-information of each possible action in a given
state.

s t

H(π (s)) =θ t E [− log π (s , a)]a∼π (s)θ t θ t

H(π (s)) =θ t − π (s , a) log π (s , a)
a

∑ θ t θ t

H(π (s)) =θ t − π (s , a) log π (s , a) da∫
a

θ t θ t

14 / 29

Entropy of a policy
A deterministic (greedy) policy has zero entropy,
the same action is always taken: exploitation.

A random policy has a high entropy, you cannot
predict which action will be taken: exploration.

Maximum entropy RL embeds the exploration-exploitation trade-off inside the objective function instead
of relying on external mechanisms such as the softmax temperature.

15 / 29

Soft Q-learning
In soft Q-learning, the objective function is defined over complete trajectories:

The goal of the agent is to generate trajectories associated with a lot of rewards (high return) but only
visiting states with a high entropy, i.e. where the policy is random (exploration).

The agent can decide how the trade-off is solved via
regularization:

If a single action leads to high rewards, the policy may
become deterministic.

If several actions lead to equivalent rewards, the policy
must stay stochastic.

J (θ) = γ E [r(s , a , s) +
t

∑ t
π t t t+1 αH(π(s))]t

Trajectories
generated by

Any other possible trajectory

Rewards

16 / 29

Soft Q-learning
In soft Q-learning, the policy is implemented as a softmax over
soft Q-values:

 plays the role of the softmax temperature parameter .

Soft Q-learning belongs to energy-based models, as represents the energy of the

Boltzmann distribution (see restricted Boltzmann machines).

The partition function is untractable for continuous action spaces, as one would

need to integrate over the whole action space, but it will disappear from the equations anyway.

π (s, a) =θ ∝
exp ∑b α

Q (s, b)θ
soft

exp

α

Q (s, a)θ
soft

exp

α

Q (s, a)θ
soft

α τ
Source: https://bair.berkeley.edu/blog/2017/10/06/soft-q-
learning/

−

α

Q (s, a)θ
soft

 exp ∑b α

Q (s, b)θ
soft

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. (2017). Reinforcement Learning with Deep Energy-Based Policies. arXiv:1702.08165 17 / 29

https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

What are soft values?
Soft V and Q values are the equivalent of the hard value functions, but for the new objective:

The soft value of an action depends on the immediate reward and the soft value of the next state (soft
Bellman equation):

The soft value of a state is the expected value over the available actions plus the entropy of the policy.

Haarnoja et al (2017) showed that these soft value functions are the solution of the entropy-regularized
objective function.

All we need is to be able to estimate them… Soft Q-learning uses complex optimization methods
(variational inference) to do it, but SAC is more practical.

J (θ) = γ E [r(s , a , s) +
t

∑ t
π t t t+1 αH(π(s))]t

Q (s , a) =θ
soft

t t E [r(s , a , s) +s ∈ρ t+1 θ t t t+1 γ V (s)]θ
soft

t+1

V (s) =θ
soft

t E [Q (s , a)] +a ∈πt θ
soft

t t H(π (s)) =θ t E [Q (s , a) −a ∈πt θ
soft

t t log π (s , a)]θ t t

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. (2017). Reinforcement Learning with Deep Energy-Based Policies. arXiv:1702.08165 18 / 29

4 - Soft Actor-Critic (SAC)

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., et al. (2018). Soft Actor-Critic Algorithms and Applications. arXiv:1812.05905 19 / 29

Soft Actor-Critic (SAC)
Putting these equations together:

we obtain:

If we want to train a critic to estimate the true soft Q-value of an action , we just
need to sample transitions and minimize:

The only difference with a SARSA critic is that the negative log-likelihood of the next action is added to
the target.

In practice, , and can come from a replay buffer, but has to be sampled from the current
policy (but not taken!).

SAC is therefore an off-policy actor-critic algorithm, but with stochastic policies!

Q (s , a) =θ
soft

t t E [r(s , a , s) +s ∈ρ t+1 θ t t t+1 γ V (s)]θ
soft

t+1

V (s) =θ
soft

t E [Q (s , a) −a ∈πt θ
soft

t t log π (s , a)]θ t t

Q (s , a) =θ
soft

t t E [r(s , a , s) +s ∈ρ t+1 θ t t t+1 γ E [Q (s , a) −a ∈πt+1 θ
soft

t+1 t+1 log π (s , a)]]θ t+1 t+1

Q (s, a)φ Q (s, a)θ
soft

(s , a , r , a)t t t+1 t+1

L(φ) = E [(r +s ,a ,s ∼ρ t t t+1 θ t+1 γ Q (s , a) −φ t+1 t+1 log π (s , a) −θ t+1 t+1 Q (s , a))]φ t t
2

s t a t r t+1 a t+1

π θ

20 / 29

Soft Actor-Critic (SAC)
But how do we train the actor? The policy is defined by a softmax over the soft Q-values, but the log-
partition is untractable for continuous spaces:

The trick is to make the parameterized actor learn to be close from this softmax, by minimizing the KL
divergence:

As does not depend on , it will automagically disappear when taking the gradient!

So the actor just has to implement a Gaussian policy and we can train it using soft-Q-value.

Z

π (s, a) =θ =
 exp ∑b α

Q (s, b)φ

exp

α

Q (s, a)φ

 exp

Z

1
α

Q (s, a)φ

π θ

L(θ) = D (π (s, a)∣∣ exp) =KL θ
Z

1
α

Q (s, a)φ E [− log]s,a∼π (s,a)θ π (s, a)θ

 exp

Z

1
α

Q (s, a)φ

Z θ

∇ L(θ) =θ E [α∇ log π (s, a) −s,a θ θ Q (s, a)]φ

21 / 29

Soft Actor-Critic (SAC)
Soft Actor-Critic (SAC) is an off-policy actor-critic architecture for maximum entropy RL:

Maximizing the entropy of the policy ensures an efficient exploration. It is even possible to learn the value
of the parameter .

The critic learns to estimate soft Q-values that take the entropy of the policy into account:

The actor learns a Gaussian policy that becomes close to a softmax over the soft Q-values:

J (θ) = γ E [r(s , a , s) +
t

∑ t
π t t t+1 αH(π(s))]t

α

L(φ) = E [(r +s ,a ,s ∼ρ t t t+1 θ t+1 γ Q (s , a) −φ t+1 t+1 log π (s , a) −θ t+1 t+1 Q (s , a))]φ t t
2

π (s, a) ∝θ exp

α

Q (s, a)φ

∇ L(θ) =θ E [α∇ log π (s, a) −s,a θ θ Q (s, a)]φ

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., et al. (2018). Soft Actor-Critic Algorithms and Applications. arXiv:1812.05905 22 / 29

SAC vs. TD3
In practice, SAC uses clipped double learning like TD3: it takes the lesser of two evils between two critics

 and .

The next action comes from the current policy, no need for target networks.

Unlike TD3, the learned policy is stochastic: no need for target noise as the targets are already stochastic.

See for a detailed comparison of SAC and
TD3.

The initial version of SAV additionally learned a soft V-value critic, but this turns out not to be needed.

Q φ 1 Q φ 2

a t+1

https://spinningup.openai.com/en/latest/algorithms/sac.html

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., et al. (2018). Soft Actor-Critic Algorithms and Applications. arXiv:1812.05905 23 / 29

https://spinningup.openai.com/en/latest/algorithms/sac.html

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., et al. (2018). Soft Actor-Critic Algorithms and Applications. arXiv:1812.05905 24 / 29

SAC results
The enhanced exploration strategy through maximum entropy RL allows to learn robust and varied
strategies that can cope with changes in the environment.

Source: https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

25 / 29

https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

Real-world robotics
The low sample complexity of SAC allows to train a real-world robot in less than 2 hours!

SAC on Minitaur - TrainingSAC on Minitaur - Training
ShareShare

26 / 29

https://www.youtube.com/watch?v=FmMPHL3TcrE

Real-world robotics
Although trained on a flat surface, the rich learned stochastic policy can generalize to complex terrains.

SAC on Minitaur - TestingSAC on Minitaur - Testing
ShareShare

27 / 29

https://www.youtube.com/watch?v=KOObeIjzXTY

Real-world robotics
When trained to stack lego bricks, the robotic arm learns to explore the whole state-action space.

This makes it more robust to external perturbations after training:

Source: https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

28 / 29

https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

References
https://ai.googleblog.com/2019/01/soft-actor-critic-deep-reinforcement.html

https://towardsdatascience.com/in-depth-review-of-soft-actor-critic-91448aba63d4

https://towardsdatascience.com/soft-actor-critic-demystified-b8427df61665

https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning

https://arxiv.org/abs/1805.00909

29 / 29

https://ai.googleblog.com/2019/01/soft-actor-critic-deep-reinforcement.html
https://towardsdatascience.com/in-depth-review-of-soft-actor-critic-91448aba63d4
https://towardsdatascience.com/soft-actor-critic-demystified-b8427df61665
https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning
https://arxiv.org/abs/1805.00909

