
Deep Reinforcement Learning
Model-based RL

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1
/
17

1 - Model-based RL

2
/
17

Model-free vs. model-based RL
In model-free RL (MF) methods, we do not need to
know anything about the dynamics of the
environment to start learning a policy:

We just sample transitions and update
Q-values or a policy network.

The main advantage is that the agent does not
need to “think” when acting: just select the action
with highest Q-value (reflexive behavior).

The other advantage is that you can use MF
methods on any MDP: you do not need to know
anything about them.

But MF methods are very slow (sample complexity): as they make no assumption, they have to learn
everything by trial-and-error from scratch.

Source: Dayan P, Niv Y. (2008). Reinforcement learning: The Good, The Bad
and The Ugly. Current Opinion in Neurobiology, Cognitive neuroscience
18:185–196. doi:10.1016/j.conb.2008.08.003

p(s ​∣s ​, a ​) r(s ​, a ​, s ​)t+1 t t t t t+1

(s, a, r, s)′

3
/
17

Model-free vs. model-based RL
If you had a model of the environment, you could plan ahead (what would happen if I did that?) and speed
up learning (do not explore stupid ideas): model-based RL (MB).

In chess, players plan ahead the possible moves up
to a certain horizon and evaluate moves based on
their emulated consequences.

In real-time strategy games, learning the
environment (world model) is part of the strategy:
you do not attack right away.

Source: https://www.chess.com/article/view/announcing-the-chess-com-
gif-maker

Source: https://towardsdatascience.com/model-based-reinforcement-
learning-cb9e41ff1f0d

4
/
17

https://www.chess.com/article/view/announcing-the-chess-com-gif-maker
https://towardsdatascience.com/model-based-reinforcement-learning-cb9e41ff1f0d

Two families of deep RL algorithms

Model-Free RL

RL Algorithms

Model-Based RL

Policy Optimization Q-Learning

TRPO

Learn the Model Given the Model

I2A

World Models AlphaZero

MBMF

C51

QR-DQN

DQN

HER

PPO

A2C / A3C

Policy Gradient

SAC

TD3

DDPG

MBVE

Source: https://github.com/avillemin/RL-Personnal-Notebook

5
/
17

https://github.com/avillemin/RL-Personnal-Notebook

2 - Model Predictive Control

6
/
17

Learning the world model
Learning the world model is not complicated in theory.

We just need to collect enough transitions using a random agent (or during learning)
and train a supervised model to predict the next state and reward.

Such a model is called the dynamics model, the transition model or the forward model.

What happens if I do that?

The model can be deterministic (use neural networks) or stochastic (use Gaussian Processes).

Given an initial state and a policy , you can unroll the future using the local model.

s ​, a ​, s ​, r ​t t t+1 t+1

NN

s ​0 π

7
/
17

Learning from imaginary rollouts
Once you have a good transition model, you can
generate rollouts, i.e. imaginary trajectories /
episodes using the model.

You can then feed these trajectories to any model-
free algorithm (value-based, policy-gradient) that
will learn to maximize the returns.

The only sample complexity is the one needed to
train the model: the rest is emulated.

Drawback: This can only work when the model is
close to perfect, especially for long trajectories or
probabilistic MDPs.

τ = (s ​, a ​, r ​, s ​, a ​, … , s ​)o o 1 1 1 T

J (θ) = E ​[R(τ)]τ

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel, P. (2018). Model-Ensemble Trust-Region Policy Optimization. arXiv:1802.10592. 8
/
17

Imperfect model
For long horizons, the slightest imperfection in the model can accumulate (drift) and lead to completely
wrong trajectories.

Source:

The emulated trajectory will have a biased return, the algorithm does not converge to the optimal policy.

If you have a perfect model, you should not be using RL anyway, as classical control methods would be
much faster (but see AlphaGo).

https://medium.com/@jonathan_hui/rl-model-based-reinforcement-learning-3c2b6f0aa323

9
/
17

https://medium.com/@jonathan_hui/rl-model-based-reinforcement-learning-3c2b6f0aa323

MPC - Model Predictive Control
The solution is to replan at each time step and execute only the first planned action in the real
environment.

Model Predictive Control iteratively plans complete trajectories, but only selects the first action.

Source: https://medium.com/@jonathan_hui/rl-model-based-reinforcement-learning-3c2b6f0aa323

Source: http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_9_model_based_rl.pdf

10
/
17

https://medium.com/@jonathan_hui/rl-model-based-reinforcement-learning-3c2b6f0aa323
http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_9_model_based_rl.pdf

MPC - Model Predictive Control

Nagabandi et al. (2017). Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. arXiv:1708.02596. 11
/
17

MPC - Model Predictive Control
The planner can actually be anything, it does not have to be a RL algorithm.

For example, it can be iLQR (Iterative Linear Quadratic Regulator), a non-linear optimization method.

.

Alternatively, one can use random-sampling
shooting:

1. in the current state, select a set of possible
actions.

2. generate rollouts with these actions and
compute their returns using the model.

3. select the action whose rollout has the highest
return.

https://jonathan-hui.medium.com/rl-lqr-ilqr-linear-quadratic-regulator-a5de5104c750

Source: https://bair.berkeley.edu/blog/2017/11/30/model-based-rl/

Nagabandi et al. (2017). Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. arXiv:1708.02596. 12
/
17

https://jonathan-hui.medium.com/rl-lqr-ilqr-linear-quadratic-regulator-a5de5104c750
https://bair.berkeley.edu/blog/2017/11/30/model-based-rl/

MPC - Model Predictive Control
The main advantage of MPC is that you can change the reward function (the goal) on the fly: what you
learn is the model, but planning is just an optimization procedure.

You can set intermediary goals to the agent very flexibly: no need for a well-defined reward function.

Model imperfection is not a problem as you replan all the time. The model can adapt to changes in the
environment (slippery terrain, simulation to real-world).

Source: https://bair.berkeley.edu/blog/2017/11/30/model-based-rl/

Nagabandi et al. (2017). Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. arXiv:1708.02596. 13
/
17

https://bair.berkeley.edu/blog/2017/11/30/model-based-rl/

3 - Dyna-Q

14
/
17

Dyna-Q
Another approach to MB RL is to augment MF
methods with MB rollouts.

The MF algorithm (e.g. Q-learning) learns from
transitions sampled either with:

real experience: interaction with the
environment.

simulated experience: simulation by the model.

If the simulated transitions are good enough, the
MF algorithm can converge using much less real
transitions, thereby reducing its sample
complexity.

The Dyna-Q algorithm is an extension of Q-learning to integrate a model .

The model can be tabular or approximated with a NN.

Source: https://towardsdatascience.com/reinforcement-learning-model-
based-planning-methods-5e99cae0abb8

(s, a, r, s)′

M(s, a) = (s , r)′ ′

Sutton, R. S. (1990). Integrated Architectures for Learning, Planning, and Reacting Based on Approximating Dynamic Programming. Machine Learning Proceedings. 15
/
17

https://towardsdatascience.com/reinforcement-learning-model-based-planning-methods-5e99cae0abb8

Dyna-Q
Initialize values and model .

for :

Select using , take it on the real environment and observe and .

Update the Q-value of the real action:

Update the model:

for steps:

Sample a state from a list of visited states.

Select using , predict and using the model .

Update the Q-value of the imagined action:

Q(s, a) M(s, a)

t ∈ [0,T ​]total

a ​t Q s ​t+1 r ​t+1

ΔQ(s ​, a ​) =t t α (r ​ +t+1 γ ​Q(s ​, a) −
a

max t+1 Q(s ​, a ​))t t

M(s ​, a ​) ←t t (s ​, r ​)t+1 t+1

K

s ​k

a ​k Q s ​k+1 r ​k+1 M(s ​, a ​)k k

ΔQ(s ​, a ​) =k k α (r ​ +k+1 γ ​Q(s ​, a) −
a

max k+1 Q(s ​, a ​))k k

16
/
17

Dyna-Q

It is interesting to notice that Dyna-Q is very similar to DQN and its experience replay memory.

In DQN, the ERM stores real transitions generated in the past.

In Dyna-Q, the model generates imagined transitions based on past real transitions.

Environment

DQN

Experience
Replay
Memory

(s, r, s')

(a)

Minibatch of experiences (s, a, r, s')

http://incompleteideas.net/sutton/book/the-book.html 17
/
17

http://incompleteideas.net/sutton/book/the-book.html

