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1 - Model-based RL



Model-free vs. model-based RL

Model based

Model| free

—

C-urrent Opinion in Meurobiology

Source: Dayan P, Niv Y. (2008). Reinforcement learning: The Good, The Bad

and The Ugly. Current Opinion in Neurobiology, Cognitive neuroscience
18:185-196. doi:10.1016/j.conb.2008.08.003

In model-free RL (MF) methods, we do not need to
know anything about the dynamics of the
environment to start learning a policy:

p(s?H—l ‘St? a’t) T(St, A, St—l-l)

We just sample transitions (s, a, r, s') and update
Q-values or a policy network.

The main advantage is that the agent does not
need to “think” when acting: just select the action
with highest Q-value (reflexive behavior).

The other advantage is that you can use MF
methods on any MDP: you do not need to know

anything about them.

e But MF methods are very slow (sample complexity): as they make no assumption, they have to learn

everything by trial-and-error from scratch.
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Model-free vs. model-based RL

o If you had a model of the environment, you could plan ahead (what would happen if | did that?) and speed
up learning (do not explore stupid ideas): model-based RL (MB).

e In chess, players plan ahead the possible moves up ¢ In real-time strategy games, learning the
to a certain horizon and evaluate moves based on environment (world model) is part of the strategy:

their emulated consequences. you do not attack right away.

(-
A

1< How to Win in Wonder Race in Age of Empiresi;'z

Source: https://www.chess.com/article/view/announcing-the-chess-com- Source: https://towardsdatascience.com/model-based-reinforcement-
gif-maker learning-cb9e41ff1f0d
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Two families of deep RL algorithms
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Source: https://github.com/avillemin/RL-Personnal-Notebook
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2 - Model Predictive Control



Learning the world model

e Learning the world model is not complicated in theory.

e We just need to collect enough transitions s;, a;, S;11, T+11 using a random agent (or during learning)

and train a supervised model to predict the next state and reward.

St )\

- St+41

NN

Clt >

/

> Tt4+1

e Such a model is called the dynamics model, the transition model or the forward model.

= What happens if | do that?

e The model can be deterministic (use neural networks) or stochastic (use Gaussian Processes).

e Given an initial state sy and a policy 7, you can unroll the future using the local model.
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Learning from imaginary rollouts

Generate
Imaginary policy
rollouts B

Improve policy
B 0+ aVyJ(6)

S

=T
e )

Kurutach, T., Clavera,

Once you have a good transition model, you can
generate rollouts, i.e. imaginary trajectories /
episodes using the model.

T — (Soaaoarlaslaa’l? . '78T)

You can then feed these trajectories to any model-
free algorithm (value-based, policy-gradient) that
will learn to maximize the returns.

J(0) = E-[R(7),

The only sample complexity is the one needed to
train the model: the rest is emulated.

Drawback: This can only work when the model is
close to perfect, especially for long trajectories or
probabilistic MDPs.

l., Duan, Y., Tamar, A., and Abbeel, P. (2018). Model-Ensemble Trust-Region Policy Optimization. arXiv:1802.10592.



Imperfect model

e Forlong horizons, the slightest imperfection in the model can accumulate (drift) and lead to completely
wrong trajectories.

fis not modeled
4 here before

Source: https://medium.com/@jonathan_hui/rl-model-based-reinforcement-learning-3c2b6f0aa323

 The emulated trajectory will have a biased return, the algorithm does not converge to the optimal policy.

e |f you have a perfect model, you should not be using RL anyway, as classical control methods would be
much faster (but see AlphaGo).

9/17


https://medium.com/@jonathan_hui/rl-model-based-reinforcement-learning-3c2b6f0aa323

MPC - Model Predictive Control

e The solution is to replan at each time step and execute only the first planned action in the real
environment.

&
Replan at every time step
to take corrective action

Source: https://medium.com/@jonathan_hui/rl-model-based-reinforcement-learning-3c2b6f0aa323

e Model Predictive Control iteratively plans complete trajectories, but only selects the first action.

1. run base policy my(a¢|s¢) (e.g., random policy) to collect D = {(s,a,s’);}

learn dynamics model f(s,a) to minimize >, || f(si, a;) — s}||°

. plan through f(s,a) to choose actions

. execute the first planned action, observe resulting state s’ (MPC)

U w0 N

every N steps

append (s, a,s’) to dataset D

Source: http://rail.eecs.berkeley.edu/deeprlcourse-fal7/f17docs/lecture_9_model_based_rl.pdf
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MPC - Model Predictive Control
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Nagabandi et al. (2017). Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. arXiv:1708.02596.
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MPC - Model Predictive Control

e The planner can actually be anything, it does not have to be a RL algorithm.
e For example, it can be iLQR (Iterative Linear Quadratic Regulator), a non-linear optimization method.

https://jonathan-hui.medium.com/rl-lgr-ilgr-linear-quadratic-regulator-a5de5104c¢750.

e Alternatively, one can use random-sampling
shooting:

1. in the current state, select a set of possible
actions.

2. generate rollouts with these actions and
compute their returns using the model.

3. select the action whose rollout has the highest
return.

Source: https://bair.berkeley.edu/blog/2017/11/30/model-based-rl/

Nagabandi et al. (2017). Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. arXiv:1708.02596.
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MPC - Model Predictive Control

e The main advantage of MPC is that you can change the reward function (the goal) on the fly: what you
learn is the model, but planning is just an optimization procedure.

e You can set intermediary goals to the agent very flexibly: no need for a well-defined reward function.

e Model imperfection is not a problem as you replan all the time. The model can adapt to changes in the
environment (slippery terrain, simulation to real-world).

Source: https://bair.berkeley.edu/blog/2017/11/30/model-based-rl/

Nagabandi et al. (2017). Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. arXiv:1708.02596.
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3 - Dyna-Q



Dyna-Q

e Another approach to MB RL is to augment MF

/I \\ methods with MB rollouts.
P/olicy/value functjons

e The MF algorithm (e.g. Q-learning) learns from

planning update transitions (s, a, r, s') sampled either with:
diLeC;;'é es)ig‘;r'gﬁge = real experience: interaction with the
P fe real ! environment.
\EXP search . . . :
mc|>del | control = simulated experience: simulation by the model.
earning
e If the simulated transitions are good enough, the
Model MF algorithm can converge using much less real
: transitions, thereby reducing its sample
Environm nt] o
[ O © complexity.

Source: https://towardsdatascience.com/reinforcement-learning-model-
based-planning-methods-5e99caelabb8

o The Dyna-Q algorithm is an extension of Q-learning to integrate a model M (s,a) = (s',7').

e The model can be tabular or approximated with a NN.

Sutton, R. S. (1990). Integrated Architectures for Learning, Planning, and Reacting Based on Approximating Dynamic Programming. Machine Learning Proceedings.
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Dyna-Q

e Initialize values Q)(s, @) and model M (s, a).

o fort € |0, Tiotall:

= Select a; using (), take it on the real environment and observe s;11 and 7. 1.

= Update the Q-value of the real action:
AQ(Staat) — ("”t+1 Ty m(?x Q(3t+1,a) - Q(Staat))
= Update the model:

M(Sta a't) A (St—l—la rt—l—l)

= for K steps:

o Sample a state s from a list of visited states.

o Select ay, using (), predict s3.1 and 71 using the model M(sk, ak).

o Update the Q-value of the imagined action:

AQ(Skaak) — (rk—i—l + Y maaXQ(Sk—l—laa’) o Q(Skaak))
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Dyna-Q

Minibatch of experiences (s, a, I, S')

value/pollcy ——
(s, T, 8" :
acting
planning - Experience
d||£1e|_ct Replay
(a) Memory
model experience
model
learning
Environment

t is interesting to notice that Dyna-Q is very similar to DQN and its experience replay memory.

n DQN, the ERM stores real transitions generated in the past.

e In Dyna-Q, the model generates imagined transitions based on past real transitions.

http://incompleteideas.net/sutton/book/the-book.html
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