REEHS

UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE

CHEMNITZ

Deep Reinforcement Learning

| earned world models

Julien Vitay

Professur fur Kunstliche Intelligenz - Fakultat fir Informatik

1/61

Model-based RL algorithms with learned models

Model-based augmented model-free (MBMF) Model-based planning

e Dyna-Q: the model generates imaginary e MPC: the learned model is used to plan actions
transitions/rollouts that are used to train a model- that maximize the RL objective.
free algorithm.

- Predicted State " _,;jﬁ"--
—e— Ground Truth ~ .° .7
= Chosen Action

AR

/s A\
Policy/value functions
L AN

j_ .J‘\:_. = : =~ “ : _\‘\ .r -:_.."'." I :"-_.'_'.'.'_’_,'l‘_ i - Sa o "
planning update ' AV YAY Y T'I:-.T e
simulated St11 = fo(St, ap) arg Iil(f':};{ E r(st, at)
experience 7 t=0

direct RL
update real Dynamics Model Control and Planning
experience
model search
learning control
Sty I't
Model
[Environment]
Source: https://towardsdatascience.com/reinforcement-learning-model- Source: https://arxiv.org/abs/1901.03737

based-planning-methods-5e99cae0abb8

e TDM: Temporal difference models (pong et al, 2018)
e NAF: Normalized advantage functions Guetal, 2016)
e World models (Ha and Schmidhuber, 2018)
e |2A: Imagination-augmented agents (weber et al., 2017)
e PlaNet (Hafner et al., 2019)
e MBVE: model-based value estimation (reinberg et al., 2018)
e Dreamer (Hafner et al, 2020)

2/61

https://towardsdatascience.com/reinforcement-learning-model-based-planning-methods-5e99cae0abb8
https://arxiv.org/abs/1901.03737

1 - 12A - Imagination-augmented agents

Imagination-Augmented Agents
for Deep Reinforcement Learning

Théophane Weber® Sébastien Racaniere® David P. Reichert™ Lars Buesing
Arthur Guez Danilo Rezende Adria Puigdomeénech Badia Oriol Vinyals
Nicolas Heess Yujia i Razvan Pascanu Peter Battaglia
Demis Hassabis David Silver Daan Wierstra
DeepMind

https://deepmind.com/blog/article/agents-imagine-and-plan

Weber, T., Racaniére, S., Reichert, D. P, Buesing, L., Guez, A., Rezende, D. J., et al. (2017). Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.

3 /61

https://deepmind.com/blog/article/agents-imagine-and-plan

|2A - Imagination-augmented agents

e |12A is a model-based augmented model-free method: it trains a MF algorithm (A3C) with the help of
rollouts generated by a MB model.

Figure 3. Random examples of procedurally generated Sokoban levels. The player (green sprite)
needs to push all 4 boxes onto the red target squares to solve a level, while avoiding 1rreversible
mistakes. Our agents receive sprite graphics (shown above) as observations.

e They showcase their algorithm on the puzzle environment Sokoban, where you need to move boxes to
specified locations.

e Sokoban is a quite hard game, as actions are irreversible (you can get stuck) and the solution requires
many actions (sparse rewards).

« MF methods are bad at this game as they learn through trials-and-(many)-errors.

Weber, T., Racaniére, S., Reichert, D. P, Buesing, L., Guez, A., Rezende, D. J., et al. (2017). Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203. 4/61

Sokoban

c
o
=
=
O
(0p)
N
[
>
()
—
c
©
QO
O
<
O
0))
&

n | | =
A" T -I--I-I- -II- i I-I-'-II-I-I--II-I-I-II- I--I-I-'-I-l

...1._.n m .___u ERETEp S _.-u. _._u...n__....
1

“intigSig®ig®iptin m._u I
m.:m_uwnnm.em.: .uw_nm.zmﬂm
1 I

. u_. =m_
mnH__.._u. ._._._—..

‘Illli

._m.um_ St e, H_mm
HE ke o

B "

m..._____ et P m__.

F m i =m_
H H H

Bl .uh;u_;hﬂwun:m_m
- 5 L R L

' u.‘.. 1. _u_.- '..‘ .l.h“-.”“.u-..

[A u__nm_ u.a___m

h- HI‘IIII&HHHHHI "H‘
R T 1H
4m.um_uu.uu. m_:g.
|ﬁ.—

L
. m. ,

m..

n..

.-.l.-”.-lll.lll.‘._m_“

..._- _._u i .
El-Lm“..

n_:m_nm.:u_m

..II;IIiII. .Iﬁtu.

n
h-l-ll-'---l--l-ll-ll-ll-lll-I#

....1._.._-__ .n_
mn uumm—Lu.—_.q._m—L m—

.um_nu_uwnnm.um.nr.

5/61

https://www.youtube.com/watch?v=fg8QImlvB-k

I2A - Imagination-augmented agents

e The model learns to predict the next frame and the next reward based on the four last frames and the
chosen action.

input observations stacked context ConvNet predicted observation

y= = J{ﬁ ﬁ - 3 . .
Figure 2: Environment model. The
_’ |] input action 1s broadcast and concate-

./ L). .
< 7 4 ' “ nated to the observation. A convolu-
! | tional network transforms this into a
input action one-hot o) predicted reward i : Py . .

pixel-wise probability distribution for
O—U_1L1J] the output image, and a distribution

e "\ for the reward.

e |tis a convolutional autoencoder, taking additionally an action a as input and predicting the next reward.

e |t can be pretrained using a random policy, and later fine-tuned during training.

Weber, T., Racaniére, S., Reichert, D. P, Buesing, L., Guez, A., Rezende, D. J., et al. (2017). Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.

6 /61

I2A - Imagination-augmented agents

a) Imagination core

b) Single imagination rollout c) Full 12A Architecture

internal state

Policy Net Env. Model

EM

1. imagine future ;2. encode

Model-based path

l Aggregator |

Rollout encoder
| RoHoutencoder\

Rollout
.Encoding

-{

Weber, T., Racaniére, S., Reichert, D. P, Buesing, L., Guez, A., Rezende, D. J., et al. (2017). Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.

x‘:}de -free path

7 /61

I2A - Imagination-augmented agents

a) Imagination core

Policy Net Env. Model | ™
| % | EM
— T
II|I \ III."
| |
‘-_':T:-}-f""' .E“Jl
. O
Op.O; t+1
or ,

I't+1

internal state

fixed input

The imagination core is composed of the environment model
M (s, a) and a rollout policy 7.

As Sokoban is a POMDP (partially observable), the notation

uses observation o; instead of states s¢, but it does not really
matter here.

The rollout policy 7 is a simple and fast policy. It does not
have to be the trained policy .

It could even be a random policy, or a pretrained policy using
for example A3C directly.

In 12A, it is a distilled policy from the trained policy 7 (see
later).

Take home message: given the current observation o; and a

policy 7, we can predict the next observation 0,1 and the
next reward 74 1.

Weber, T., Racaniére, S., Reichert, D. P, Buesing, L., Guez, A., Rezende, D. J., et al. (2017). Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.

8 /61

b) Single imagination rollout

1. imagine future ;2. encode
H -
Ot42
lmag' : - : Encac]er
- core Friol
*
Imag. | > 515 1 + ‘“‘““]L
g o + Encoder
I -~ :
cole i1
\j
A \
Rollout
O .
L Encoding

I2A - Imagination-augmented agents

e The imagination rollout module uses the
imagination core to predict iteratively the next 7

frames and rewards using the current frame o; and
the rollout policy:

Ot —7> Oty1 —7 Oty92 —7 « oo =2 Oy rp

e The 7 frames and rewards are passed backwards

to a convolutional LSTM (from ¢ 4 7 to t) which
produces an embedding / encoding of the rollout.

e The output of the imagination rollout module is a

vector e; (the final state of the LSTM) representing

the whole rollout, including the (virtually) obtained
rewards.

e Note that because of the stochasticity of the rollout

policy 7, different rollouts can lead to different
encoding vectors.

Weber, T., Racaniére, S., Reichert, D. P, Buesing, L., Guez, A., Rezende, D. J., et al. (2017). Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.

9/61

I2A - Imagination-augmented agents

e For the current observation o;, we then generate one rollout
per possible action (5 in Sokoban):

c) Full 12A Architecture T, V

_Model-based path __.,..-f---*'""" M odel-free path

-

= What would happen if | do action 1?

Aggregator
7 T = What would happen if | do action 2?
ks B] = efc.
% % e The resulting vectors are concatenated to the output of
gl |3 model-free path (a convolutional neural network taking the
- : current observation as input).
_O_t < o Altogether, we have a huge NN with weights 8 (model,

e We can then learn the policy 7 and value function V' based on this input to maximize the returns:

n—1

Vé’j(e) — ﬂstwpg,atwﬂg [Vé’ log 7"-9(3t7 a't) (Z fyk Tttk+1 T 7n VQD(SIH-"Z) o V@(St))]
k=0

n—1

L(¢) = Esi~psai~mo [(Z Y ek + " Vio(St4n) — Vw(st))Z]
k=0

encoder, MF path) producing an input s; to the A3C module.

10 /61

I2A - Imagination-augmented agents

e The complete architecture may seem complex, but everything is differentiable so we can apply
backpropagation and train the network end-to-end using multiple workers.

e Itisthe A3C algorithm (MF), but augmented by MB rollouts, i.e. with explicit information about the future.

m, V

a) Imagination core b) Single imagination rollout c) Full I12A Architecture

E 4 A

- 1. imagine future 2. encode — \
Policy Net Env. Model 9 “\\\Mndel-based path _ \Model-free path
. s e e : s e e - \
A ~ : - \
~ (Lt ~ \
T — | EM \ l \“‘\ Aggregator \
Oprol .
Imag. +Ot+2 > N , \
core [| T H
—— % anit _ _
— ,.—\ "\\ o) 5 E
IOt S = imag. > Ct+11i, Q O
or (Ft_i_l g +""::::"::::::::: + Enggder @ Q . = o
O T i = 3
! S| |s
: —_— oc o
internal state A R Yoo - .
o Rollout \—+ S /
fixed input ‘ Encoding |

Weber, T., Racaniére, S., Reichert, D. P, Buesing, L., Guez, A., Rezende, D. J., et al. (2017). Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203. 11/61

Policy distillation

e The rollout policy 7 is trained using policy distillation of the trained policy .

e The small rollout policy network with weights 6 tries to copy the outputs (s, a) of the bigger policy

network (A3C).

e This is a supervised learning task: just minimize the KL divergence between the two policies:

e As the network is smaller, it won't be as good as 7, but its learning objective is easier.

Rusuy, A. A, Colmenarejo, S. G., Gulcehre, C., Desjardins, G., Kirkpatrick, J., Pascanu, R., et al. (2016). Policy Distillation. arXiv:1511.06295.

L(0) =

Teacher Mode|

(large neural network)

Us,a | Dkr (7 (s, a)||7(s,a))

Loss

12 /61

Distral : distill and transfer learning

e FYI: distillation can be used to ensure generalization over different environments.

e Each learning algorithms learns its own task, but tries not to diverge too much from a shared policy,
which turns out to be good at all tasks.

distill regularise

regularise

a

—-\egularlse

regularise distill

1St

Teh, Y. W,, Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick, J., Hadsell, R, et al. (2017). Distral: Robust Multitask Reinforcement Learning. arXiv:1707.04175

13 /61

I2A - Imagination-augmented agents

e Unsurprisingly, 12A performs better than A3C on Sokoban.
e The deeper the rollout, the better.

Sokoban performance Unroll depth analysis

=
-
=
o

p_—

o
o
o
oo

O
=)
<
=)

o
B

o
=
Nt

unroll depth
— 15

— | 2A

- standard(large)
= ctandard

no reward |24

copy-model 124 —_— 1

0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
environment steps le9 environment steps le9

o
M

fraction of levels solved
fraction of levels solved
=
P
en

o

-

bt
O
-

Figure 4: Sokoban learning curves. Left: training curves of I2A and baselines. Note that I2A use
additional environment observations to pretrain the environment model, see main text for discussion.
Right: 12A training curves for various values of imagination depth.

Teh, Y. W,, Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick, J., Hadsell, R., et al. (2017). Distral: Robust Multitask Reinforcement Learning. arXiv:1707.04175 14 /61

I2A - Imagination-augmented agents

e The model does not even have to be perfect: the MF path can compensate for imperfections.

Rollout steps 10 Sokoban good vs. bad models
—_—— o
E o me -EE 0.8 o pped AT —— [2A: good model
L " o —_ —— |2A: poor model
n — MC: good model
: - ?m.} 0.6 —— MC: poor model
_ . v 0.
A
-...- s
-
o
0 0.2
1]
—
0.0 —=
0.0 0.2 0.4 0.6 0.8 1.0
environment steps 1le9

Figure 5: Experiments with a noisy environment model. Left: each row shows an example 5-step
rollout after conditioning on an environment observation. Errors accumulate and lead to various
artefacts, including missing or duplicate sprites. Right: comparison of Monte-Carlo (MC) search and
[2A when using either the accurate or the noisy model for rollouts.

Teh, Y. W,, Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick, J., Hadsell, R., et al. (2017). Distral: Robust Multitask Reinforcement Learning. arXiv:1707.04175

15 /61

|2A - Sokoban

O Imagination-augmented agent plays Sokoban

ﬁc—%%“ﬁﬁﬁ'%

e %%%%

> “ ”’ ’“ : “”’ ’ i

16 /61

https://www.youtube.com/watch?v=llwAwE7ItdM

2 - Temporal difference models - TDM (skipped)

TEMPORAL DIFFERENCE MODELS:
MODEL-FREE DEEP RLL FOR MODEL-BASED CONTROL

Vitchyr Pong* Shixiang Gu*

University of California, Berkeley University of Cambridge

vitchyr@berkeley.edu Max Planck Institute
Google Brain

sg/7l7@cam.ac.uk

Murtaza Dalal Sergey Levine
University of California, Berkeley University of California, Berkeley
mdalal@berkeley.edu svlevineldeecs.berkeley.edu

Pong V, Gu S, Dalal M, Levine S. (2018). Temporal Difference Models: Model-Free Deep RL for Model-Based Control. arXiv:1802.09081

17 /61

TDM

e One problem with model-based planning is the discretization time step (difference betweent and ¢ + 1).

e |tis determined by the action rate: how often a different action a+ has to be taken.

e Inrobotics, it could be below the millisecond, leading to very long trajectories in terms of steps.

e |f you want to go from Berkeley to the Golden State

bridge with your bike, planning over leg movements
will be very expensive (long horizon).

e

e A solution is multiple steps ahead planning.
Instead of learning a one-step model:

St+1 = fe(staat)

one learns to predict the state achieved in T' steps
using the current policy:

St+T = fe(St»ataW)

Source: https://bairblog.github.io/2018/04/26/tdm/

e Planning and acting occur at different time scales.

18 /61

https://bairblog.github.io/2018/04/26/tdm/

TDM

e A problem with RL in general is how to define the reward function.

e |f you goalis to travel from Berkeley to the Golden
éo State bridge, which reward function should you
| use?

= +1 at the bridge, 0 otherwise (sparse).
= +100 at the bridge, -1 otherwise (sparse).
= minus the distance to the bridge (dense).

e Goal-conditioned RL defines the reward function
using the distance between the achieved state s;. 1

and a goal state s:

T(St, Aty Str1) = —||St41 — S|

Source: https://bairblog.github.io/2018/04/26/tdm/

e An action is good if it brings the agent closer to its goal.

e The Euclidean distance works well for the biking example (e.g. using a GPS), but the metric can be
adapted to the task.

19 /61

https://bairblog.github.io/2018/04/26/tdm/

Goal-conditioned RL

One advantage is that you can learn multiple “tasks” at the same time with a single policy, not the only
one hard-coded in the reward function.

Another advantage is that it makes a better use of exploration by learning from mistakes: hindsight
experience replay (HER, Andrychowicz et al., 2017).

If your goal is to reach s, but the agent generates a trajectory
landing in s, you can learn that this trajectory is good way to

reach s,/! v
In football, if you try to score a goal but end up doing apassto)

a teammate, you can learn that this was a bad shot and a
good pass.

VIRTUAL GOAL
ACHIEVED

HER is a model-based method: you implicitly learn a model of

the environment by knowing how to reach any position. Source: https://openai.com/blog/ingredients-for-robotics-
research/

Exploration never fails: you always learn to do something, even if this was not your original goal.

The principle of HER can be used in all model-free methods: DQN, DDPG, etc.

Andrychowicz M, Wolski F, Ray A, Schneider J, Fong R, Welinder P, McGrew B, Tobin J, Abbeel P, Zaremba W. (2017). Hindsight Experience Replay. arXiv:1707.01495

20 /61

https://openai.com/blog/ingredients-for-robotics-research/

TDM

e Using the goal-conditioned reward function r(s;, at, St+1) = —||St+1 — Sg4

, how can we learn?

« * TDMintroduces goal-conditioned Q-value with a horizon 1"
Q(s,a,s,,T).

e The Q-value of an action should denote how close we will be from
the goal s, in I’ steps.

e |f we can estimate these Q-values, we can use a planning algorithm
such as MPC to find the action that will bring us closer to the goal
easily:

*

a = arg IIza,X T(8t+T, at+T 3t+T+1)
t

e This corresponds to planning I’ steps ahead; which action should | do now in order to be close to the
goal in I’ steps?

oo

oo

Source: https://bairblog.github.io/2018/04/26/tdm/

21 /61

https://bairblog.github.io/2018/04/26/tdm/

TDM

o If the horizon T" is well chosen, we only need to plan over a small number of intermediary positions, not
over each possible action.

e TDM is model-free on each subgoal, but model-based on the whole trajectory.

Source: https://bairblog.github.io/2018/04/26/tdm/

22 /61

https://bairblog.github.io/2018/04/26/tdm/

TDM

 How can we learn the goal-conditioned Q-values Q(s, a, s,, T') with a model?

e TDM introduces a recursive relationship for the Q-values:

o |r(s,a,8)]if T =0

Q(Sa a,Sg, T) —

F

s [max, Q(s',a,s,,T —1)] otherwise.

s [r(s,a,8) 1(T =0) + max Q(s',a,s,, T — 1) 1(T # 0)]

a

o If we plan over T' = 0 steps, i.e. immediately after the action (s, a), the Q-value is the remaining distance
to the goal from the next state s’.

 Otherwise, it is the Q-value of the greedy action in the next state s’ with an horizon T' — 1 (one step
shorter).

e This allows to learn the Q-values from single transitions (st, a, st+1):

= with I = 0, the target is the remaining distance to the goal.

= withI' > 0, the target is the Q-value of the next action at a shorter horizon.

23 /61

TDM

e The critic learns to minimize the prediction error off-policy:

L(0) = Es, 4, 5,.,en|(r(8t,0¢, 8t41) (T = 0) + max Q(st41,a, 84, T — 1) 1(T # 0) — Q(s¢, at, sg,T))2:

e This is a model-free Q-learning-like update rule, that can be learned by any off-policy value-based
algorithm (DQN, DDPG) and an experience replay memory.

e The cool trick is that, with a single transition (s, a;, S¢11), you can train the critic with:

= different horizons 7', e.g. between 0 and 11, «.

= different goals s,. You can sample any achievable state as a goal, including the “true” s; 1
(hindsight).

 You do not only learn to reach s, but any state! TDM learns a lot of information from a single transition,
so it has a very good sample complexity.

24 /61

Summary of TDM

o TDM learns to break long trajectories into finite horizons (model-based planning) by learning model-free
(Q-learning updates).

e The critic learns how good an action (s, a) is order to reach a state s, in I’ steps.

Q(s,a, 59, T) = Egr(s, a,5') 1(T = 0) + max Q(s',a, 55, T — 1) 1(T # 0))
e The actor uses MPC planning to iteratively select actions that bring us closer to the goal in I’ steps:
a; = argmax Q(s¢,a, sq, T)
a

e The argmax can be estimated via sampling.

e TDM is a model-based method in disguise: it does predict the next state directly, but how much closer it
will be to the goal via Q-learning.

25/61

TDM results

e For problems where the model is easy to learn, the performance of TDM is on par with model-based
methods (MPC).

Source: https://bairblog.github.io/2018/04/26/tdm/

e Model-free methods have a much higher sample

complexity.

e TDM learns much more from single transitions.

Final Distance to Goal Position

1.6 +

1.4 A

1.2

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

Iy

‘N dp““m‘u M v 0

—_— TDM

DDPG

HER
DDPG-Sparse
Model Based

AN ORNAL A

I I I
20 40 o0 80 100
Environment Samples (x1000)

26 / 61

https://bairblog.github.io/2018/04/26/tdm/

TDM results

[
O
O
&
&
O
(-
—
Q
Y
(il
>
7))
7))
O
O
i e
)
D
&
O
D
N
Q0]
Q
[
O
O
=
o

e For problems where the model is complex to learn, the performance of TDM is on par with model-free
methods (DDPG).

imprecision on long horizons.
e TDM plans over shorter horizons 1’

! | I I
400 200 800 1000

Environment Samples (x1,000)

I
200

5.0

uonIsod |eoo 03 2ouUelsiq [euld

W
-
5 8
18]
o
o
i [
- = mw mm =
i =
* O wd o
- O I 0=
]]]]
i - L = ol =
-+ = s sa) o ™

27 1 61

Source: https://bairblog.github.io/2018/04/26/tdm/

https://bairblog.github.io/2018/04/26/tdm/

3 - World models

World Models

https://worldmodels.github.io/

David Ha! Jiirgen Schmidhuber ?°

Ha, D., and Schmidhuber, J. (2018). World Models. NIPS. doi:10.5281/zenodo.1207631.

28 /61

https://worldmodels.github.io/

World models

o The core idea of world models is to explicitly separate the world model (what will happen next) from the
controller (how to act).

e Deep RL NN are usually small, as rewards do not contain enough information to train huge networks.

At each time step, our agent
receives an observation from
the environment.

World Model

The Vision Model (V) encodes the
high-dimensional observation into
a low-dimensional latent vector.

The Memory RNN (M) integrates
the historical codes to create a
representation that can predict

-
future states. S d S g
h h h
A small Controller (C) uses the 4 v v
representations from both ‘ C I ‘ C I ‘ C I

V and M to select good actions. Z

M > M M >

)

Z Z Z
D e D e D
h h h
>
.

The agent performs actions that d a a
go back and affect the environment.

https://worldmodels.github.io/

29 /61

https://worldmodels.github.io/

World models

e A huge world model can be efficiently trained by supervised or unsupervised methods.

e A small controller should not need too many trials if its input representations are good.

At each time step, our agent
receives an observation from
the environment.
World Model l
7 7 7
Y Y Y
B - B\ - B\
The Memory RNN (M) integrates f h f h f h
> —>»>
N N

The Vision Model (V) encodes the \

high-dimensional observation into \ \V
a low-dimensional latent vector.

the historical codes to create a M M M >
representation that can predict

p
future states. > 4 g
h h h
A small Controller (C) uses the
representations from both ‘ C | ‘ C \ I C \

V and M to select good actions. Z

J

The agent performs actions that a a a
go back and affect the environment.

https://worldmodels.github.io/

30/ 61

https://worldmodels.github.io/

The Vizdoom Take Cover environment

http://vizdoom.cs.put.edu.pl/, https://worldmodels.github.io/

31/61

http://vizdoom.cs.put.edu.pl/
https://worldmodels.github.io/

World models

e The vision module V is trained as a variational autoencoder (VAE) on single frames of the game.

e The latent vector z; contains a compressed representation of the frame 0.

Original Observed Frame

B

Encoder

()

https://worldmodels.github.io/

/

_—

Decoder

T~

Reconstructed Frame

https://worldmodels.github.io/

World models

Screenshot Image Reconstruction

‘ Load Random Screenshot ‘ ‘ Randomize Z ‘

e Go to https://worldmodels.github.io/ for an interactive demo.

33 /61

https://worldmodels.github.io/

World models

e The sequence of latent representations 2z, . . . Z; in a game is fed to a LSTM layer together with the
actions a; to compress what happens over time.

e A Mixture Density Network (MDN) is used to predict the distribution of the next latent representations
P(Zt_|_]_‘a,t, ht, « o Zt).

e The RNN-MDN architecture has been used successfully in the past for sequence generation problems
such as generating handwriting and sketches (Sketch-RNN).

Tt Ttﬂ Ttﬂ
x MDN / \ MDN / \ MDN /
A A A
T ________ T T ________ T T ________ T
4) 4 D 4 ~
i > RNN N, > RNN . > RNN N,y >
r\ y r\ y r\ y
aH T at T at+1 T
ZH Zt ZJH_]

https://worldmodels.github.io/

Ha, D., and Eck, D. (2017). A Neural Representation of Sketch Drawings. arXiv:1704.03477 34 /61

https://worldmodels.github.io/

Sketch-RNN

>

https://magenta.tensorflow.org/sketch-rnn-demo

Ha, D., and Eck, D. (2017). A Neural Representation of Sketch Drawings. arXiv:1704.03477

https://magenta.tensorflow.org/sketch-rnn-demo

World models

e The last step is the controller. It takes a latent representation z; and the current hidden state of the LSTM
h; as inputs and selects an action linearly:

ar = tanh(W [Zt, ht] —+ b)

e A RL actor cannot get simpler as that...

{ environment]< —
l action

~.

S VAE (V)

PEEIRN

Z
observation y >
C
MDN-RNN (M) >

I action
J _

—

https://worldmodels.github.io/

e The controller is not even trained with RL: it uses a genetic algorithm, the Covariance-Matrix Adaptation
Evolution Strategy (CMA-ES), to find the output weights that maximize the returns.

e The world model is trained by classical supervised learning using a random agent before learning.

36 / 61

https://worldmodels.github.io/

World models : car racing

https://worldmodels.github.io/

37 /61

https://worldmodels.github.io/

World models : car racing

e Below is the input of the VAE and the reconstruction.

e The reconstruction does not have to be perfect as long as the latent space is informative.

https://worldmodels.github.io/

38 /61

https://worldmodels.github.io/

World models : car racing

e Controller seeing only z;. e Controller seeing both z; and h;.

e Having access to a full rollout of the future leads to more stable driving.

https://worldmodels.github.io/

39 /61

https://worldmodels.github.io/

World models
Algorithm:

1. Collect 10,000 rollouts from a random policy.
2. Train VAE (V) to encode each frame into a latent vector z € R3?.

3. Train MDN-RNN (M) to model P(z¢+1|a:, hy, ... 2:).

4. Evolve Controller (C) to maximize the expected cumulative reward of a rollout.

Parameters for car racing:

Model Parameter Count
VAE 4,348,547
MDN-RNN 422,368
Controller 867

40/ 61

World models : car racing

Method
DQN [53]
A3C (continuous) [52]
A3C (discrete) [57]
ceobillionaire’s algorithm (unpublished) [47]
V model only, z input

V model only, z input with a hidden layer

Full World Model, z and h

https://worldmodels.github.io/

Average Score over 100 Random Tracks

343 = 18

591 == 45

652 = 10

838 = 17

632

/88

207

147

906 = 21

41 /61

https://worldmodels.github.io/

World models

{ environment]<

action
> VAE (V)
I

observation ! >

u 1 C
world model = | MDN-RNN (M) >

_)

S t """"""""" ~] action

https://worldmodels.github.io/

The world model V+M is learned offline with a
random agent, using unsupervised learning.

The controller C has few weights (1000) and can
be trained by evolutionary algorithms, not even RL.

The network can even learn by playing entirely in its
own imagination as the world model can be applied
on itself and predict all future frames.

It just need to additionally predict the reward.

The learned policy can then be transferred to the
real environment.

https://worldmodels.github.io/

4 - Deep Planning Network - PlaNet

Learning Latent Dynamics for Planning from Pixels

Danijar Hafner ' ° Timothy Lillicrap® Ian Fischer* Ruben Villegas ' °
David Ha' Honglak Lee! James Davidson '

Hafner D, Lillicrap T, Fischer |, Villegas R, Ha D, Lee H, Davidson J. (2019). Learning Latent Dynamics for Planning from Pixels. arXiv:181104551

43 /61

PlaNet

o PlaNet extends the idea of World models by learning the model together with the policy (end-to-end).

o It learns a latent dynamics model that takes the past observations o; into account (needed for POMDPs):

Stvrt+176t — f(otaa/ta St—l)

and plans in the latent space using multiple rollouts:

a; = arg max CIR(St,a, St+1,...)]

l
l
l
l

ﬂ
—~
—~
—~

. |
© © °, °, O,

Source: https://planetrl.github.io/

44 /61

https://planetrl.github.io/

PlaNet: latent dynamics model

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

PlaNet: latent dynamics model

The latent dynamics model is a sequential variational autoencoder learning concurrently:

. An encoder from the observation o; to the latent

space S;.

q(st|ot)

. A decoder from the latent space to the

reconstructed observation 0.

p(ét |3t)

. A transition model to predict the next latent

representation given an action.

P(3t+1 ‘St, at)

. A reward model predicting the immediate reward.

p(rt|5t)

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-
planning.html

The loss function to train this recurrent state-space model (RSSM), with a deterministic component in the
transition model (RNN) and stochastic components is not shown here.

46 / 61

https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

PlaNet: latent dynamics model

e Training sequences (01, a1, 09, ..., 0r) can be generated off-policy (e.g. from demonstrations) or on-
policy.

cl cl

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

47 / 61

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

PlaNet: latent space planning

Source;

O
;
\ 1
1-®
o
}
\ -

https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

@
+
]

N\
1-®

O
1;
I+.

L
*
||

N
_I+.

@
:
.

|
I+.

https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

PlaNet: latent space planning

From a single observation o; encoded into sy,

10000 rollouts are generated using random
sampling.

A belief over action sequences is updated using the
cross-entropy method (CEM) in order to restrict the

search.

The first action of the sequence with the highest
estimated return (reward model) is executed.

At the next time step, planning starts from scratch:
Model Predictive Control.

There is no actor in PlaNet, only a transition model
used for planning.

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-
planning.html

49 / 61

https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

PlaNet results

e Planet learns continuous image-based control problems in 2000 episodes, where D4PG needs 50 times
more.

i Learning Latent Dynamics for Planning from Pixels

L L

—

505 Episodes

https://www.youtube.com/watch?v=tZk1eof_VNA

PlaNet results

e The latent dynamics model can learn 6 control tasks at the same time.

e Asthere is no actor, but only a planner, the same network can control all agents!

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

51/61

https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

5 - Dreamer

Published as a conference paper at ICLR 2020

DREAM TO CONTROL: LEARNING BEHAVIORS
BY LATENT IMAGINATION

Danijar Hafner ~ Timothy Lillicrap Jimmy Ba Mohammad Norouzi
University of Toronto DeepMind University of Toronto Google Brain
Google Brain

Hafner D, Lillicrap T, Ba J, Norouzi M. (2020). Dream to Control: Learning Behaviors by Latent Imagination. arXiv:191201603

52 /61

Dreamer

e Dreamer extends the idea of PlaNet by additionally training an actor instead of using a MPC planner.

e The latent dynamics model is the same RSSM architecture.

e Training a "model-free” actor on imaginary rollouts instead of MPC planning should reduce the
computational time.

.I !
World Model Learning Value and Environment
L earning Actor Netwaorks Interaction

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

53 /61

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

Dreamer: latent dynamics model

e The latent dynamics model is the same as in PlaNet, learning from past experiences.

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

a a,

54 /61

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

Dreamer: behavior module

e The behavior module learns to predict the value of a state V,,(s) and the policy s (s) (actor-critic).

e Itis trained in imagination in the latent space using the reward model for the immediate rewards (to
compute returns) and the transition model for the next states.

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

e The current observation o0; is encoded into a state s¢, the actor selects an action a;, the transition model
predicts s;11, the reward model predicts 7.1, the critic predicts V,,(s;).

e At the end of the sequence, we apply backpropagation-through-time to train the actor and the critic.

55 /61

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

Dreamer: behavior module

e The critic V,,(s;) is trained on the imaginary sequence (S, ¢, T¢+1, St+1, - - - , ST) to Minimize the
prediction error with the A-return:

T—t—1
R} =(1-X) » AN 'R+ XN"'R,

n=1

e The actor 779(3,5, at) is trained on the sequence to maximize the sum of the value of the future states:

T
T(0) = B anm[) Ve (s0)]
t'=t

‘IHHHII

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

56 /61

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

Dreamer

e The main advantage of training an actor is that we need only one rollout when training it: backpropagation
maximizes the expected returns.

e When acting, we just need to encode the history of the episode in the latent space, and the actor
becomes model-free!

5,

VE

!

V.

P
2

1 2 Vl a*l
® ® ®

T T AN A e A
/N 7\ 7\ A A A A
AAAAAA A A A A
EEEEEE B =o8

(a) Learn dynamics from experience (b) Learn behavior in imagination (¢) Act in the environment

ol
Q)

Hafner D, Lillicrap T, Ba J, Norouzi M. (2020). Dream to Control: Learning Behaviors by Latent Imagination. arXiv:191201603 57 /61

Dreamer results

e Dreamer beats model-free and model-based methods on 20 continuous control tasks.

..

Sparse Cartpole Acrobot Swingup Hopper Hop Walker Run Quadruped Run

B Dreamer (5e6 steps) B PlaNet (5e6 steps) B D4PG (1e8 steps) M A3C (1e8 steps, proprio)

W LU L AL

d

L 2T L8 Hxd OO N> T HT S BT T E L e 5P 5 E 3P LY B5e 85 3§ &

s 2 SE FE 83 2L 2783 REEE 98 855555973525 c¢ 98 A8 25

g%gﬁ ggggmgmggg;}g £ Z ‘EEEQEME g:gm_&m%mgc
wq—) .,.Q " o, ﬂ.) m uu—i

O A O— ¥ 8 T O E: 04 E:% 2 % O T <3
A & = & = z

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

58 /61

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

Dreamer results

It also learns Atari and Deepmind lab video games, sometimes on par with Rainbow or IMPALA!

Episode Return

200000

Episode Return

2 & &
2 8 8

150000 -

— [Dreamer

Up N Down

2 4 6
Environment Steps 1e7

Source: https://dreamrl.github.io/

Boxing Freeway Frostbite Collect Objects
Mspacman Namethisgame Pong
_______________ 10000 -
_______________ 7500
5000 -
_____________ 2500

e]
ﬂ?"ﬁ' .-J“L~

Watermaze

Tutankham

le7 le7
Zaxxon Watermaze
K0V wo4 40 -
7.5 - — -
5.0 -
2.5 -
004 e
0.5 1.0 1.5 0.250.500.75 1.00 1.25 1.50 1 2 3 4 5
Environment Steps 1e7 Environment Steps le7 Environment Steps 1e7
== DON (2e8 steps) == Rainbow (2eB steps) == IMPALA (lel0steps) - Random

== SimPLe (1e5 steps)

59 /61

https://dreamrl.github.io/

DayDreamer

e Arecent extension of Dreamer, DayDreamer, allows physical robots to learn complex tasks in a few hours.

https://danijar.com/daydreamer

o\ Y/ .
R - : , = 4 . SN IEm '
(a) A1 Quadruped Walking (b) URS Visual Pick Place (¢) XArm Visual Pick Place (d) Sphero Navigation

Figure 1: To study the applicability of Dreamer for sample-efficient robot learning, we apply the
algorithm to learn robot locomotion, manipulation, and navigation tasks from scratch in the real
world on 4 robots, without simulators. The tasks evaluate a diverse range of challenges, including
continuous and discrete actions, dense and sparse rewards, proprioceptive and camera inputs, as well
as sensor fusion of multiple input modalities. Learning successfully using the same hyperparameters
across all experiments, Dreamer establishes a strong baseline for real world robot learning.

Wu, P, Escontrela, A., Hafner, D., Goldberg, K., & Abbeel, P. (2022). DayDreamer: World Models for Physical Robot Learning (arXiv:2206.14176).

60 / 61

https://danijar.com/daydreamer

DayDreamer

«;5' Learning to Walk in the Real World in 1 Hour (No Simulator)

|’

61 /61

https://www.youtube.com/watch?v=xAXvfVTgqr0

