
Deep Reinforcement Learning
Learned world models

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1 / 61



Model-based RL algorithms with learned models
Model-based augmented model-free (MBMF)

Dyna-Q: the model generates imaginary
transitions/rollouts that are used to train a model-
free algorithm.

NAF: Normalized advantage functions (Gu et al., 2016)

I2A: Imagination-augmented agents (Weber et al., 2017)

MBVE: model-based value estimation (Feinberg et al., 2018)

Model-based planning

MPC: the learned model is used to plan actions
that maximize the RL objective.

TDM: Temporal difference models (Pong et al., 2018)

World models (Ha and Schmidhuber, 2018)

PlaNet (Hafner et al., 2019)

Dreamer (Hafner et al, 2020)

Source: https://towardsdatascience.com/reinforcement-learning-model-
based-planning-methods-5e99cae0abb8

Source: https://arxiv.org/abs/1901.03737

2 / 61

https://towardsdatascience.com/reinforcement-learning-model-based-planning-methods-5e99cae0abb8
https://arxiv.org/abs/1901.03737


1 - I2A - Imagination-augmented agents

https://deepmind.com/blog/article/agents-imagine-and-plan

Weber, T., Racanière, S., Reichert, D. P., Buesing, L., Guez, A., Rezende, D. J., et al. (2017). Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203. 3 / 61

https://deepmind.com/blog/article/agents-imagine-and-plan


I2A - Imagination-augmented agents
I2A is a model-based augmented model-free method: it trains a MF algorithm (A3C) with the help of
rollouts generated by a MB model.

They showcase their algorithm on the puzzle environment Sokoban, where you need to move boxes to
specified locations.

Sokoban is a quite hard game, as actions are irreversible (you can get stuck) and the solution requires
many actions (sparse rewards).

MF methods are bad at this game as they learn through trials-and-(many)-errors.

Weber, T., Racanière, S., Reichert, D. P., Buesing, L., Guez, A., Rezende, D. J., et al. (2017). Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203. 4 / 61



Sokoban

Sokoban: Level 2 solutionSokoban: Level 2 solution
ShareShare

5 / 61

https://www.youtube.com/watch?v=fg8QImlvB-k


I2A - Imagination-augmented agents
The model learns to predict the next frame and the next reward based on the four last frames and the
chosen action.

It is a convolutional autoencoder, taking additionally an action  as input and predicting the next reward.

It can be pretrained using a random policy, and later fine-tuned during training.

a

Weber, T., Racanière, S., Reichert, D. P., Buesing, L., Guez, A., Rezende, D. J., et al. (2017). Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203. 6 / 61



I2A - Imagination-augmented agents

Weber, T., Racanière, S., Reichert, D. P., Buesing, L., Guez, A., Rezende, D. J., et al. (2017). Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203. 7 / 61



I2A - Imagination-augmented agents
The imagination core is composed of the environment model 

 and a rollout policy .

As Sokoban is a POMDP (partially observable), the notation
uses observation  instead of states , but it does not really
matter here.

The rollout policy  is a simple and fast policy. It does not
have to be the trained policy .

It could even be a random policy, or a pretrained policy using
for example A3C directly.

In I2A, it is a distilled policy from the trained policy  (see
later).

Take home message: given the current observation  and a
policy , we can predict the next observation  and the
next reward .

M(s, a) π̂

o  t s  t

π̂

π

π

o  t

π̂  ôt+1

 r̂t+1

Weber, T., Racanière, S., Reichert, D. P., Buesing, L., Guez, A., Rezende, D. J., et al. (2017). Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203. 8 / 61



I2A - Imagination-augmented agents
The imagination rollout module uses the
imagination core to predict iteratively the next 
frames and rewards using the current frame  and
the rollout policy:

The  frames and rewards are passed backwards
to a convolutional LSTM (from  to ) which
produces an embedding / encoding of the rollout.

The output of the imagination rollout module is a
vector  (the final state of the LSTM) representing
the whole rollout, including the (virtually) obtained
rewards.

Note that because of the stochasticity of the rollout
policy , different rollouts can lead to different
encoding vectors.

τ

o  t

o  →t  →ôt+1  →ôt+2 … →  ôt+τ

τ

t + τ t

e  i

π̂

Weber, T., Racanière, S., Reichert, D. P., Buesing, L., Guez, A., Rezende, D. J., et al. (2017). Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203. 9 / 61



I2A - Imagination-augmented agents
For the current observation , we then generate one rollout
per possible action (5 in Sokoban):

What would happen if I do action 1?

What would happen if I do action 2?

etc.

The resulting vectors are concatenated to the output of
model-free path (a convolutional neural network taking the
current observation as input).

Altogether, we have a huge NN with weights  (model,
encoder, MF path) producing an input  to the A3C module.

We can then learn the policy  and value function  based on this input to maximize the returns:

o  t

θ

s  t

π V

∇  J (θ) =θ E  [∇  log π  (s  , a  ) (  γ r  +s  ∼ρ  ,a  ∼π  t θ t θ θ θ t t

k=0

∑
n−1

k
t+k+1 γ V  (s  ) −n

φ t+n V  (s  ))]φ t

L(φ) = E  [(  γ r  +s  ∼ρ  ,a  ∼π  t θ t θ

k=0

∑
n−1

k
t+k+1 γ V  (s  ) −n

φ t+n V  (s  )) ]φ t
2

10 / 61



I2A - Imagination-augmented agents
The complete architecture may seem complex, but everything is differentiable so we can apply
backpropagation and train the network end-to-end using multiple workers.

It is the A3C algorithm (MF), but augmented by MB rollouts, i.e. with explicit information about the future.

Weber, T., Racanière, S., Reichert, D. P., Buesing, L., Guez, A., Rezende, D. J., et al. (2017). Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203. 11 / 61



Policy distillation
The rollout policy  is trained using policy distillation of the trained policy .

The small rollout policy network with weights  tries to copy the outputs  of the bigger policy
network (A3C).

This is a supervised learning task: just minimize the KL divergence between the two policies:

As the network is smaller, it won’t be as good as , but its learning objective is easier.

π̂ π

θ̂ π(s, a)

L( ) =θ̂ E  [D  ( (s, a)∣∣π(s, a))]s,a KL π̂

π

Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins, G., Kirkpatrick, J., Pascanu, R., et al. (2016). Policy Distillation. arXiv:1511.06295. 12 / 61



Distral : distill and transfer learning
FYI: distillation can be used to ensure generalization over different environments.

Each learning algorithms learns its own task, but tries not to diverge too much from a shared policy,
which turns out to be good at all tasks.

Teh, Y. W., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick, J., Hadsell, R., et al. (2017). Distral: Robust Multitask Reinforcement Learning. arXiv:1707.04175 13 / 61



I2A - Imagination-augmented agents
Unsurprisingly, I2A performs better than A3C on Sokoban.

The deeper the rollout, the better.

Teh, Y. W., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick, J., Hadsell, R., et al. (2017). Distral: Robust Multitask Reinforcement Learning. arXiv:1707.04175 14 / 61



I2A - Imagination-augmented agents
The model does not even have to be perfect: the MF path can compensate for imperfections.

Teh, Y. W., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick, J., Hadsell, R., et al. (2017). Distral: Robust Multitask Reinforcement Learning. arXiv:1707.04175 15 / 61



I2A - Sokoban

Imagination-augmented agent plays SokobanImagination-augmented agent plays Sokoban
ShareShare

16 / 61

https://www.youtube.com/watch?v=llwAwE7ItdM


2 - Temporal difference models - TDM (skipped)

Pong V, Gu S, Dalal M, Levine S. (2018). Temporal Difference Models: Model-Free Deep RL for Model-Based Control. arXiv:1802.09081 17 / 61



TDM
One problem with model-based planning is the discretization time step (difference between  and ).

It is determined by the action rate: how often a different action  has to be taken.

In robotics, it could be below the millisecond, leading to very long trajectories in terms of steps.

If you want to go from Berkeley to the Golden State
bridge with your bike, planning over leg movements
will be very expensive (long horizon).

A solution is multiple steps ahead planning.
Instead of learning a one-step model:

one learns to predict the state achieved in  steps
using the current policy:

Planning and acting occur at different time scales.

t t + 1

a  t

Source: https://bairblog.github.io/2018/04/26/tdm/

s  =t+1 f  (s  , a  )θ t t

T

s  =t+T f  (s  , a  ,π)θ t t

18 / 61

https://bairblog.github.io/2018/04/26/tdm/


TDM
A problem with RL in general is how to define the reward function.

If you goal is to travel from Berkeley to the Golden
State bridge, which reward function should you
use?

+1 at the bridge, 0 otherwise (sparse).

+100 at the bridge, -1 otherwise (sparse).

minus the distance to the bridge (dense).

Goal-conditioned RL defines the reward function
using the distance between the achieved state 
and a goal state :

An action is good if it brings the agent closer to its goal.

The Euclidean distance works well for the biking example (e.g. using a GPS), but the metric can be
adapted to the task.

Source: https://bairblog.github.io/2018/04/26/tdm/

s  t+1

s  g

r(s  , a  , s  ) =t t t+1 −∣∣s  −t+1 s  ∣∣g

19 / 61

https://bairblog.github.io/2018/04/26/tdm/


Goal-conditioned RL
One advantage is that you can learn multiple “tasks” at the same time with a single policy, not the only
one hard-coded in the reward function.

Another advantage is that it makes a better use of exploration by learning from mistakes: hindsight
experience replay (HER, Andrychowicz et al., 2017).

If your goal is to reach  but the agent generates a trajectory
landing in , you can learn that this trajectory is good way to
reach !

In football, if you try to score a goal but end up doing a pass to
a teammate, you can learn that this was a bad shot and a
good pass.

HER is a model-based method: you implicitly learn a model of
the environment by knowing how to reach any position.

Exploration never fails: you always learn to do something, even if this was not your original goal.

The principle of HER can be used in all model-free methods: DQN, DDPG, etc.

s  g

s  g′

s  g′

Source: https://openai.com/blog/ingredients-for-robotics-
research/

Andrychowicz M, Wolski F, Ray A, Schneider J, Fong R, Welinder P, McGrew B, Tobin J, Abbeel P, Zaremba W. (2017). Hindsight Experience Replay. arXiv:1707.01495 20 / 61

https://openai.com/blog/ingredients-for-robotics-research/


TDM
Using the goal-conditioned reward function , how can we learn?

TDM introduces goal-conditioned Q-value with a horizon : 
.

The Q-value of an action should denote how close we will be from
the goal  in  steps.

If we can estimate these Q-values, we can use a planning algorithm
such as MPC to find the action that will bring us closer to the goal
easily:

This corresponds to planning  steps ahead; which action should I do now in order to be close to the
goal in  steps?

r(s  , a  , s  ) =t t t+1 −∣∣s  −t+1 s  ∣∣g

T

Q(s, a, s  ,T )g

s  g T

a =∗ arg  r(s  , a  , s  )
a  t

max t+T t+T t+T+1

T

T

Source: https://bairblog.github.io/2018/04/26/tdm/

21 / 61

https://bairblog.github.io/2018/04/26/tdm/


TDM
If the horizon  is well chosen, we only need to plan over a small number of intermediary positions, not
over each possible action.

TDM is model-free on each subgoal, but model-based on the whole trajectory.

Source: 

T

https://bairblog.github.io/2018/04/26/tdm/

22 / 61

https://bairblog.github.io/2018/04/26/tdm/


TDM
How can we learn the goal-conditioned Q-values  with a model?

TDM introduces a recursive relationship for the Q-values:

If we plan over  steps, i.e. immediately after the action , the Q-value is the remaining distance
to the goal from the next state .

Otherwise, it is the Q-value of the greedy action in the next state  with an horizon  (one step
shorter).

This allows to learn the Q-values from single transitions :

with , the target is the remaining distance to the goal.

with , the target is the Q-value of the next action at a shorter horizon.

Q(s, a, s  ,T )g

  

Q(s, a, s  ,T )g =    ⎩⎨
⎧E  [r(s, a, s )] if T = 0s′

′

E  [max  Q(s , a, s  ,T − 1)] otherwise.s′ a
′

g

= E  [r(s, a, s ) 1(T = 0) +  Q(s , a, s  ,T − 1) 1(T = 0)]s′
′

a
max ′

g 

T = 0 (s, a)
s′

s′ T − 1

(s  , a  , s  )t t t+1

T = 0

T > 0

23 / 61



TDM
The critic learns to minimize the prediction error off-policy:

This is a model-free Q-learning-like update rule, that can be learned by any off-policy value-based
algorithm (DQN, DDPG) and an experience replay memory.

The cool trick is that, with a single transition , you can train the critic with:

different horizons , e.g. between 0 and .

different goals . You can sample any achievable state as a goal, including the “true” 
(hindsight).

You do not only learn to reach , but any state! TDM learns a lot of information from a single transition,
so it has a very good sample complexity.

L(θ) = E  [(r(s  , a  , s  ) 1(T =s  ,a  ,s  ∈Dt t t+1 t t t+1 0) +  Q(s  , a, s  ,T −
a

max t+1 g 1) 1(T = 0) − Q(s  , a  , s  ,T )) ]t t g
2

(s  , a  , s  )t t t+1

T T  max

s  g s  t+T

s  g

24 / 61



Summary of TDM
TDM learns to break long trajectories into finite horizons (model-based planning) by learning model-free
(Q-learning updates).

The critic learns how good an action (s, a) is order to reach a state  in  steps.

The actor uses MPC planning to iteratively select actions that bring us closer to the goal in  steps:

The argmax can be estimated via sampling.

TDM is a model-based method in disguise: it does predict the next state directly, but how much closer it
will be to the goal via Q-learning.

s  g T

Q(s, a, s  ,T ) =g E  [r(s, a, s ) 1(T =s′
′ 0) +  Q(s , a, s  ,T −

a
max ′

g 1) 1(T = 0)]

T

a  =t arg  Q(s  , a, s  ,T )
a

max t g

25 / 61



TDM results
For problems where the model is easy to learn, the performance of TDM is on par with model-based
methods (MPC).

Model-free methods have a much higher sample
complexity.

TDM learns much more from single transitions.

Source: https://bairblog.github.io/2018/04/26/tdm/

26 / 61

https://bairblog.github.io/2018/04/26/tdm/


TDM results
For problems where the model is complex to learn, the performance of TDM is on par with model-free
methods (DDPG).

Model-based methods suffer from model
imprecision on long horizons.

TDM plans over shorter horizons .

Source: https://bairblog.github.io/2018/04/26/tdm/

T

27 / 61

https://bairblog.github.io/2018/04/26/tdm/


3 - World models

https://worldmodels.github.io/

Ha, D., and Schmidhuber, J. (2018). World Models. NIPS. doi:10.5281/zenodo.1207631. 28 / 61

https://worldmodels.github.io/


World models
The core idea of world models is to explicitly separate the world model (what will happen next) from the
controller (how to act).

Deep RL NN are usually small, as rewards do not contain enough information to train huge networks.

https://worldmodels.github.io/

29 / 61

https://worldmodels.github.io/


World models
A huge world model can be efficiently trained by supervised or unsupervised methods.

A small controller should not need too many trials if its input representations are good.

https://worldmodels.github.io/

30 / 61

https://worldmodels.github.io/


The Vizdoom Take Cover environment



, http://vizdoom.cs.put.edu.pl/ https://worldmodels.github.io/ 31 / 61

http://vizdoom.cs.put.edu.pl/
https://worldmodels.github.io/


World models
The vision module  is trained as a variational autoencoder (VAE) on single frames of the game.

The latent vector  contains a compressed representation of the frame .

Encoder z Decoder

Original Observed Frame Reconstructed Frame

V

z  t o  t

https://worldmodels.github.io/

32 / 61

https://worldmodels.github.io/


World models

Go to  for an interactive demo.https://worldmodels.github.io/

33 / 61

https://worldmodels.github.io/


World models
The sequence of latent representations  in a game is fed to a LSTM layer together with the
actions  to compress what happens over time.

A Mixture Density Network (MDN) is used to predict the distribution of the next latent representations 
.

The RNN-MDN architecture has been used successfully in the past for sequence generation problems
such as generating handwriting and sketches (Sketch-RNN).

z  , … z0 t

a  t

P (z  ∣a  ,h , … z  )t+1 t t t

https://worldmodels.github.io/

Ha, D., and Eck, D. (2017). A Neural Representation of Sketch Drawings. arXiv:1704.03477 34 / 61

https://worldmodels.github.io/


Sketch-RNN



https://magenta.tensorflow.org/sketch-rnn-demo

Ha, D., and Eck, D. (2017). A Neural Representation of Sketch Drawings. arXiv:1704.03477 35 / 61

https://magenta.tensorflow.org/sketch-rnn-demo


World models
The last step is the controller. It takes a latent representation  and the current hidden state of the LSTM

 as inputs and selects an action linearly:

A RL actor cannot get simpler as that…

The controller is not even trained with RL: it uses a genetic algorithm, the Covariance-Matrix Adaptation
Evolution Strategy (CMA-ES), to find the output weights that maximize the returns.

The world model is trained by classical supervised learning using a random agent before learning.

z  t

ht

a  =t tanh(W [z  ,h  ] +t t b)

https://worldmodels.github.io/

36 / 61

https://worldmodels.github.io/


World models : car racing



https://worldmodels.github.io/ 37 / 61

https://worldmodels.github.io/


World models : car racing
Below is the input of the VAE and the reconstruction.

The reconstruction does not have to be perfect as long as the latent space is informative.



https://worldmodels.github.io/ 38 / 61

https://worldmodels.github.io/


World models : car racing
Controller seeing only . Controller seeing both  and .

Having access to a full rollout of the future leads to more stable driving.

z  t



z  t h  t



https://worldmodels.github.io/ 39 / 61

https://worldmodels.github.io/


World models
Algorithm:

1. Collect 10,000 rollouts from a random policy.

2. Train VAE (V) to encode each frame into a latent vector .

3. Train MDN-RNN (M) to model .

4. Evolve Controller (C) to maximize the expected cumulative reward of a rollout.

Parameters for car racing:

Model Parameter Count

VAE 4,348,547

MDN-RNN 422,368

Controller 867

z ∈ R32

P (z  ∣a  ,h  , … z  )t+1 t t t

40 / 61



World models : car racing

https://worldmodels.github.io/

41 / 61

https://worldmodels.github.io/


World models
The world model V+M is learned offline with a
random agent, using unsupervised learning.

The controller C has few weights (1000) and can
be trained by evolutionary algorithms, not even RL.

The network can even learn by playing entirely in its
own imagination as the world model can be applied
on itself and predict all future frames.

It just need to additionally predict the reward.

The learned policy can then be transferred to the
real environment.

https://worldmodels.github.io/

42 / 61

https://worldmodels.github.io/


4 - Deep Planning Network - PlaNet

Hafner D, Lillicrap T, Fischer I, Villegas R, Ha D, Lee H, Davidson J. (2019). Learning Latent Dynamics for Planning from Pixels. arXiv:181104551 43 / 61



PlaNet
PlaNet extends the idea of World models by learning the model together with the policy (end-to-end).

It learns a latent dynamics model that takes the past observations  into account (needed for POMDPs):

and plans in the latent space using multiple rollouts:

o  t

s  , r  ,  =t t+1 ôt f(o  , a  , s  )t t t−1

a  =t arg  E[R(s  , a, s  , …)]
a

max t t+1

Source: https://planetrl.github.io/

44 / 61

https://planetrl.github.io/


PlaNet: latent dynamics model

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

45 / 61

https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html


PlaNet: latent dynamics model
The latent dynamics model is a sequential variational autoencoder learning concurrently:

1. An encoder from the observation  to the latent
space .

2. A decoder from the latent space to the
reconstructed observation .

3. A transition model to predict the next latent
representation given an action.

4. A reward model predicting the immediate reward.

The loss function to train this recurrent state-space model (RSSM), with a deterministic component in the
transition model (RNN) and stochastic components is not shown here.

o  t

s  t

q(s  ∣o  )t t

 ôt

p(  ∣s  )ôt t

p(s  ∣s  , a  )t+1 t t

p(r  ∣s  )t t

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-
planning.html

46 / 61

https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html


PlaNet: latent dynamics model
Training sequences  can be generated off-policy (e.g. from demonstrations) or on-
policy.

Source: 

(o  , a  , o  , … , o  )1 1 2 T

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

47 / 61

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html


PlaNet: latent space planning

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

48 / 61

https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html


PlaNet: latent space planning
From a single observation  encoded into ,
10000 rollouts are generated using random
sampling.

A belief over action sequences is updated using the
cross-entropy method (CEM) in order to restrict the
search.

The first action of the sequence with the highest
estimated return (reward model) is executed.

At the next time step, planning starts from scratch:
Model Predictive Control.

There is no actor in PlaNet, only a transition model
used for planning.

o  t s  t

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-
planning.html

49 / 61

https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html


PlaNet results
Planet learns continuous image-based control problems in 2000 episodes, where D4PG needs 50 times
more.

Learning Latent Dynamics for Planning from PixelsLearning Latent Dynamics for Planning from Pixels
ShareShare

50 / 61

https://www.youtube.com/watch?v=tZk1eof_VNA


PlaNet results
The latent dynamics model can learn 6 control tasks at the same time.

As there is no actor, but only a planner, the same network can control all agents!

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

51 / 61

https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html


5 - Dreamer

Hafner D, Lillicrap T, Ba J, Norouzi M. (2020). Dream to Control: Learning Behaviors by Latent Imagination. arXiv:191201603 52 / 61



Dreamer
Dreamer extends the idea of PlaNet by additionally training an actor instead of using a MPC planner.

The latent dynamics model is the same RSSM architecture.

Training a “model-free” actor on imaginary rollouts instead of MPC planning should reduce the
computational time.

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

53 / 61

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html


Dreamer: latent dynamics model
The latent dynamics model is the same as in PlaNet, learning from past experiences.

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

54 / 61

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html


Dreamer: behavior module
The behavior module learns to predict the value of a state  and the policy  (actor-critic).

It is trained in imagination in the latent space using the reward model for the immediate rewards (to
compute returns) and the transition model for the next states.

Source: 

The current observation  is encoded into a state , the actor selects an action , the transition model
predicts , the reward model predicts , the critic predicts .

At the end of the sequence, we apply backpropagation-through-time to train the actor and the critic.

V  (s)φ π  (s)θ

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

o  t s  t a  t

s  t+1 r  t+1 V  (s  )φ t

55 / 61

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html


Dreamer: behavior module
The critic  is trained on the imaginary sequence  to minimize the
prediction error with the -return:

The actor  is trained on the sequence to maximize the sum of the value of the future states:

Source: 

V  (s  )φ t (s  , a  , r  , s  , … , s  )t t t+1 t+1 T

λ

R  =t
λ (1 − λ)  λ R  +

n=1

∑
T−t−1

n−1
t
n λ R  

T−t−1
t

π  (s  , a  )θ t t

J (θ) = E  [  V  (s  )]s  ,a  ∼π  t t θ

t =t′

∑
T

φ t′

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

56 / 61

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html


Dreamer
The main advantage of training an actor is that we need only one rollout when training it: backpropagation
maximizes the expected returns.

When acting, we just need to encode the history of the episode in the latent space, and the actor
becomes model-free!

Hafner D, Lillicrap T, Ba J, Norouzi M. (2020). Dream to Control: Learning Behaviors by Latent Imagination. arXiv:191201603 57 / 61



Dreamer results
Dreamer beats model-free and model-based methods on 20 continuous control tasks.

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

58 / 61

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html


Dreamer results
It also learns Atari and Deepmind lab video games, sometimes on par with Rainbow or IMPALA!

Source: https://dreamrl.github.io/

59 / 61

https://dreamrl.github.io/


DayDreamer
A recent extension of Dreamer, DayDreamer, allows physical robots to learn complex tasks in a few hours.

https://danijar.com/daydreamer

Wu, P., Escontrela, A., Hafner, D., Goldberg, K., & Abbeel, P. (2022). DayDreamer: World Models for Physical Robot Learning (arXiv:2206.14176). 60 / 61

https://danijar.com/daydreamer


DayDreamer

Learning to Walk in the Real World in 1 Hour (No Simulator)Learning to Walk in the Real World in 1 Hour (No Simulator)
ShareShare

61 / 61

https://www.youtube.com/watch?v=xAXvfVTgqr0

