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1 - Model-based vs. Model-free



Model-based vs. Model-free

e Model-free methods use the reward prediction error (RPE) to update values:

0t = rer1 + YV (8t11) — V™ (s¢)
AV”(st) — X (St
Encountered rewards propagate very slowly to all states and actions.

Action values Iincreased Action values increased
Path taken by one-step Sarsa by Sarsa()) with 2=0.9

o If the environment changes (transition probabilities, rewards), they have to relearn everything.

e After training, selecting an action is very fast.
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Model-based vs. Model-free

 Model-based RL can learn very fast changes in the transition or reward distributions:

AT(St, A, St—l—l) — (rt—l—l T T(Sta A, St—l—l))
Ap(s'|st,a:) = a(I(s¢11 = 8') — p(s'|s¢,a¢))
e But selecting an action requires planning in the tree of possibilities (slow).
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Model-based vs. Model-free

e Relative advantages of MF and MB methods:

Inference Sample complexity  Optimality Flexibility
speed
Model-free fast nigh yes no
Model-based slow ow as good as the yes

e A trade-off would be nice... Most MB models in the deep RL literature are hybrid MB/MF models anyway.

model
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Outcome devaluation

e Two forms of behavior are observed in the animal psychology literature:

1. Goal-directed behavior learns Stimulus — Response — Outcome associations.

2. Habits are developed by overtraining Stimulus — Response associations.

 The main difference is that habits are not influenced by outcome devaluation, i.e. when rewards lose their
value.

1. Instrumental Learning 2. Taste aversion learning 3. Test
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Source: Bernard W. Balleine
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Goal-directed / habits =MB / MF ?

e The classical theory assigns MF to habits and MB to goal-directed, mostly because their sensitivity to
outcome devaluation.

Model-Free/Model-Based Value-Free/Value-Based
States

Stimuli @ @ ¢ . @ Goals
Model-Free Model-Based ) V‘WV/ Goal-D; 3
Value(s,a) Reward(s,a) Transition(s,a,s’) Hablts ""' . oal- .IreCte
_ S &7 Stimulus-Response ",’”“ Stimulus-Action-Outcome
it (5], i Uil Associations / "/AQA Associations

. 06606 {
Actions Actions

e The open question is the arbitration mechanism between these two segregated process: who takes
control?

e Recent work suggests both systems are largely overlapping.

References

Doll, B. B., Simon, D. A, and Daw, N. D. (2012). The ubiquity of model-based reinforcement learning. Current Opinion in Neurobiology 22, 1075-1081.
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2 - Successor representations
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Successor Representations (SR)

e Successor representations (SR) have been introduced to combine MF and MB properties. Let’s split the
definition of the value of a state:

V7(s) = Ex[Y 7 rerkrilse = s (1)
k=0

1 _H(St) Tt11
B ::E(St——l) T't+2
=Er[| 7| ¥ |L(8e42) | X | Pexs | 8¢ =] (3)
7l [ I(8) | [Tt4oo.

where I[(s;) is T when the agent is in s; at time ¢, 0 otherwise.

e The left part corresponds to the transition dynamics: which states will be visited by the policy, discounted
by .
e The right part corresponds to the immediate reward in each visited state.

e Couldn't we learn the transition dynamics and the reward distribution separately in a model-free manner?
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Successor Representations (SR)

e SR rewrites the value of a state into an expected discounted future state occupancy M7 (s, s') and an
expected immediate reward (s') by summing over all possible states s’ of the MDP:

V7(s) = ‘HZ Y Teikri]se = 8 (4)
k=0

— ‘C,ﬂ.[z ’yk H(St_|_k — 8,) X rt—l—k—l—l‘st — 8] (6)
s'eS k=0

(7)

~ Y Ead A Istin = 8)lse = 5] x Elraals = o (8)
s'eS k=0

Dayan, P. (1993). Improving Generalization for Temporal Difference Learning: The Successor Representation. Neural Computation 5, 613-624. doi:10.1162/nec0.1993.5.4.613.
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Successor Representations (SR)

e The underlying assumption is that the world dynamics are independent from the reward function (which
does not depend on the policy).

e This allows to re-use knowledge about world dynamics in other contexts (e.g. a new reward function in
the same environment): transfer learning.

Source: https://awjuliani.medium.com/the-present-in-terms-of-the-future-successor-representations-in-reinforcement-learning-316b78c5fa3

e What matters is the states that you will visit and how interesting they are, not the order in which you visit
them.

e Knowing that being in the mensa will eventually get you some food is enough to know that being in the
mensa is a good state: you do not need to remember which exact sequence of transitions will put food in

your mouth.
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Successor Representations (SR)

e SR algorithms must estimate two quantities:

1. The expected immediate reward received after each state:

r(s) = E|ria|se = s

2. The expected discounted future state occupancy (the SR itself):

O

MT™(s,s') = %[Z V(84 = ')t = 8]
k=0

e The value of a state s is then computed with:

VT™(s) = ZM(S, s') x r(s')

s'es
what allows to infer the policy (e.g. using an actor-critic architecture).

e The immediate reward for a state can be estimated very quickly and flexibly after receiving each reward:

Ar(s;) = a(rir —r(st))
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SR and transition matrix

e Imagine a very simple MDP with 4 states and a single deterministic action:

OO0

e The transition matrix P™ depicts the p033|ble S, 3 transmons

7)7'('

|
Nl e i e Rl
S OO
©C OO

e The SR matrix M also represents the future transitions discounted by ~:

== OO

13 /36



SR matrix in a Tolman's maze

b
d

e The SR represents whether a state can be reached
soon from the current state (b) using the current

policy.
e The SR depends on the policy:

= A random agent will map the local
neighborhood (c).

= A goal-directed agent will have SR
representations that follow the optimal path

(d).

e |tis therefore different from the transition matrix,
as it depends on behavior and rewards.

C

Russek et al. (2017). Predictive representations can link model-based reinforcement learning to model-free mechanisms. PLOS Computational Biology.

e The exact dynamics are lost compared to MB: it

only represents whether a state is reachable, not
how.
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Example of a SR matrix

 The SR matrix reflects the proximity between states depending on the transitions and the policy. it does
not have to be a spatial relationship.

Schapiro et al. (2015) SR Simulations
a Task € Successor representation
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Stachenfeld, K. L., Botvinick, M. M., and Gershman, S. J. (2017). The hippocampus as a predictive map. Nature Neuroscience 20, 1643-1653. doi:10.1038/nn.4650 15/36



Learning the SR

e How can we learn the SR matrix for all pairs of states?

O

M7 (s,") = Ex[} 7" U(sern = 5')|s = o]
k=0

e We first notice that the SR obeys a recursive Bellman-like equation:

M7 (s,8')=1(ss =§') + 4377[2 V¥ (st = 8')|st = 8]
k=1
=I(st = &)+ %[Z Y I(seiri1 = 5')|se = s]
k=0

— H(St — 8,) + 4:8t+1NP7T(3"3) [ 4:7T[Z 7k H(8t+k — 8,)‘81‘/4-1 — SH
k=0

=1(st = 5') + Y s, pr(r]s) [M" (5111, 8'))

e This is reminiscent of TDM: the remaining distance to the goal is 0 if | am already at the goal, or gamma
the distance from the next state to the goal.
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Model-based SR

e Bellman-like SR:

MW(Sa 5,) — H(St — S,) Ty €St+1NP”(s’\s) [MW(St—I—la S,)]

e |If we know the transition matrix for a fixed policy

PT(s,s') = Z w(s,a)p(s'|s,a)
a
we can obtain the SR directly with matrix inversion as we did in dynamic programming:
M" =1+~vP" x M"
so that:
M™=(I—-~P")*

e This DP approach is called model-based SR (MB-SR) as it necessitates to know the environment
dynamics.

Momennejad et al. (2017). The successor representation in human reinforcement learning. Nature Human Behaviour 1, 680-692. doi:10.1038/s41562-017-0180-8.
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Model-free SR

e |f we do not know the transition probabilities, we simply sample a single s;, s;.1 transition:

M7™(ss,8") ~1(s; =8)+yM"(s4,:1,5')

e We can define a sensory prediction error (SPE):

58 =1(sy = §') + v M (s141,8) — M(st,s')
that is used to update an estimate of the SR:

AM™(s4,8") = add®

e Thisis SR-TD, using a SPE instead of RPE, which learns only from transitions but ignores rewards.

Momennejad et al. (2017). The successor representation in human reinforcement learning. Nature Human Behaviour 1, 680-692. doi:10.1038/s41562-017-0180-8.
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The sensory prediction error - SPE

o The SPE has to be applied on ALL successor states s’ after a transition (s;, S¢11):

M7 (s¢,8") = M"(s¢,8") + o (I(sy = 8") +7 M7 (s¢41,8") — M(s,8"))

e Contrary to the RPE, the SPE is a vector of prediction errors, used to update one row of the SR matrix.

e The SPE tells how surprising a transition s; — s;.1 is for the SR.

SR Simulations

e Successor representation
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Stachenfeld, K. L., Botvinick, M. M., and Gershman, S. J. (2017). The hippocampus as a predictive map. Nature Neuroscience 20, 1643-1653. doi:10.1038/nn.4650
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Successor representations

 The SR matrix represents the expected discounted future state occupancy:

O

M7 (s,") = Ex[} 7" U(sern = 5')|s = o]
k=0

e [t can be learned using a TD-like SPE from single transitions:
M7 (s4,8") = M"(s4,8") + a(I(s; = s") + v M"(s¢41,8") — M(s¢,s))
e The immediate reward in each state can be learned independently from the policy:
Ar(s) = a(ryg —r(st))

o The value V7 (s) of a state is obtained by summing of all successor states:

V7™(s) = ZM(S, s') x r(s')

s'eS

e This critic can be used to train an actor 7y using regular TD learning (e.g. A3C).

Stachenfeld, K. L., Botvinick, M. M., and Gershman, S. J. (2017). The hippocampus as a predictive map. Nature Neuroscience 20, 1643-1653. doi:10.1038/nn.4650
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Successor representation of actions

e Note that it is straightforward to extend the idea of SR to state-action pairs:

O

M7"(s,a,s) = %[Z Vo (sppr = 8')|se = s, a; = a
k=0

allowing to estimate Q-values:

Q" (s,a) = » M(s,a,s') x r(s)

s'eS

using SARSA or Q-learning-like SPEs:

58 =1(sy = 8') + vy M™ (8441, aes1, 8') — M(st,as,s)

depending on the choice of the next action a1 (on- or off-policy).

Russek et al. (2017). Predictive representations can link model-based reinforcement learning to model-free mechanisms. PLoS Computational Biology. doi:10.1371/journal.pcbi.1005768
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3 - Successor features
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Successor features

e The SR matrix associates each state to all others (N X IV SR Simulations
mat riX) : e Successor representation

= curse of dimensionality.

= only possible for discrete state spaces.

e A betteridea is to describe each state s by a feature vector

Starting states

#(s) = [¢i(s)]L; with less dimensions than the number of
states.

S)ISIA pajoadxa pajunoosi(

e This feature vector can be constructed (see the lecture on
function approximation) or learned by an autoencoder (latent

representation). Visited states
[ :‘."ﬂ']' ) ::ma?f/l
I v ens
0 | ) has o hiskers
0 _J tlephimt

Source: http://www.jessicayung.com/the-successor-representation-1-generalising-between-states/

Stachenfeld, K. L., Botvinick, M. M., and Gershman, S. J. (2017). The hippocampus as a predictive map. Nature Neuroscience 20, 1643-1653. doi:10.1038/nn.4650
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Successor features

e The successor feature representation (SFR) represents the discounted probability of observing a feature
¢; after beingin s.

[ g ) km”?w
4o I | how eags
ﬁ al;?m t b3 has ke

Source: http://www.jessicayung.com/the-successor-representation-1-generalising-between-states/

e Instead of predicting when the agent will see a cat after being in the current state s, the SFR predicts
when it will see eyes, ears or whiskers independently:

M7 (s) = M7 (s,¢;) = Ex[> 7" 1(¢;(s1x))|s¢ = 5,0 = a

e Linear SFR (Gehring, 2015) supposes that it can be linearly approximated from the features of the current
state:

M]( ) MW 3 ¢] Zmz,] sz

Gehring CA. 2015. Approximate Linear Successor Representation. Presented at the The multi-disciplinary conference on Reinforcement Learning and Decision Making (RLDM). 24 /36
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Successor features

e The value of a state is now defined as the sum over successor features of their immediate reward
discounted by the SFR:

e The SFR matrix M™ = |m; ;|; ; associates each feature ¢; of the current state to all successor features
Pj-

= Knowing that | see a kitchen door in the current state, how likely will | see a food outcome in the near
future?

» Each successor feature ¢; is associated to an expected immediate reward 7(¢; ).

= A good state is a state where food features (high (¢, )) are likely to happen soon (high m; ).

e |n matrix-vector form:

V™(s) =r' x M™ x ¢(s)

Gehring CA. 2015. Approximate Linear Successor Representation. Presented at the The multi-disciplinary conference on Reinforcement Learning and Decision Making (RLDM).
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Successor features

e Value of a state:
V™(s) =r! x M™ x ¢(s)

e The reward vector r only depends on the features and can be learned independently from the policy, but
can be made context-dependent:

» Food features can be made more important when the agent is hungry, less when thirsty.

e Transfer learning becomes possible in the same environment:

= Different goals (searching for food or water, going to place A or B) only require different reward
vectors.

» The dynamics of the environment are stored in the SFR.

Source: https://awjuliani.medium.com/the-present-in-terms-of-the-future-successor-representations-in-reinforcement-learning-316b78c5fa3

Gehring CA. 2015. Approximate Linear Successor Representation. Presented at the The multi-disciplinary conference on Reinforcement Learning and Decision Making (RLDM).
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Successor features

e How can we learn the SFR matrix M™?

V™(s) =1’ x M™ x ¢(s)

« We only need to use the sensory prediction error for a transition between the feature vectors ¢(s; ) and

P(5t41):

07 = p(s1) + ¥ M™ X p(s11) — M™ x ¢(sy)
and use it to update the whole matrix:

AM™ = 5" x ¢(s)T

« However, this linear approximation scheme only works for fixed feature representation ¢(s). We need to
go deeper...

Gehring CA. 2015. Approximate Linear Successor Representation. Presented at the The multi-disciplinary conference on Reinforcement Learning and Decision Making (RLDM).

27 /1 36



4 - Deep Successor Reinforcement Learning
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Deep Successor Reinforcement Learning
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Figure 1: Model Architecture: DSR consists of: (1) feature branch fy (CNN) which takes in raw
images and computes the features ¢g,, (2) successor branch u, which computes the SR mg, , for
each possible action a € A, (3) a deep convolutional decoder which produces the input reconstruction
s¢ and (4) a linear regressor to predict instantaneous rewards at s;. The Q-value function can be
estimated by taking the inner-product of the SR with reward weights: Q7 (s, a) ~ mg, - W.

Kulkarni, T. D., Saeedi, A., Gautam, S., and Gershman, S. J. (2016). Deep Successor Reinforcement Learning. arXiv:1606.02396
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Deep Successor Reinforcement Learning

o Each state s; is represented by a D-dimensional (D=512) vector ¢(s;) = fg(s:) which is the output of an
encoder.

» Adecoder g; is used to provide a reconstruction loss, so ¢(s;) is a latent representation of an
autoencoder:

A

Lreconstruction(ey 0) — 4:[(963 (¢(St)) o St)2]

o The immediate reward R(s;) is linearly predicted from the feature vector ¢(s; ) using a reward vector w.

R(St) — ¢(St)T X W

Lreward(wae) — 41[(7°t—|—1 — ¢(St)T X W)2]

o The reconstruction loss is important, otherwise the latent representation ¢(s; ) would be too reward-
oriented and would not generalize.

e The reward function is learned on a single task, but it can fine-tuned on another task, with all other
weights frozen.

Kulkarni, T. D., Saeedi, A., Gautam, S., and Gershman, S. J. (2016). Deep Successor Reinforcement Learning. arXiv:1606.02396 30 /36



Deep Successor Reinforcement Learning

e The compound loss is used to train the complete network end-to-end off-policy using a replay buffer

For each action a, a NN wu,, predicts the future feature occupancy M (s, s’, a) for the current state:

The Q-value of an action is simply the dot product between the SR of an action and the reward vector w:

Mg,q = ua(sta CL)

T
a) =
Q(s¢,a) = W' X My,q

The selected action is e-greedily selected around the greedy action:

The SR of each action is learned using the Q-learning-like SPE (with fixed 6 and a target network u,/):

(DQN-like).

a; = arg max (s, a)
a

L (@) = E[) _(#(s:) + 7 maxuy (si11,0) — ta(st,a))?)

a
a

A

5(9, 07 W, Oé) — Ereconstruction(ea é) + Lreward (W7 9) =+ LSPE (Oé)

Kulkarni, T. D., Saeedi, A., Gautam, S., and Gershman, S. J. (2016). Deep Successor Reinforcement Learning. arXiv:1606.02396
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Deep Successor Reinforcement Learning

Algorithm 1 Learning algorithm for DSR

1: Initialize experience replay memory D, parameters {6, o, w, é} and exploration probability
e = 1.

2: for1 =1 : #epmsodes do
3: Initialize game and get start state description s
4 while not terminal do
J: Ps = f 9(5)
6: With probability €, sample a random action a, otherwise choose argmax  u,,(¢s, a) - W
7: Execute a and obtain next state s’ and reward R(s’) from environment
8: Store transition (s, a, R(s'),s") in D
9: Randomly sample mini-batches from D
10: Perform gradient descent on the loss L"(w, #) + L*(6, 8) with respect to w, 6 and 6.
11: Fix (0,0, w) and perform gradient descent on L™ («, #) with respect to .
12: s < s
13: end while
14: Anneal exploration variable ¢

15: end for

Kulkarni, T. D., Saeedi, A., Gautam, S., and Gershman, S. J. (2016). Deep Successor Reinforcement Learning. arXiv:1606.02396 32/36



Deep Successor Reinforcement Learning

Figure 2: Environments: (left) MazeBase map where the agent starts at an arbitrary location and
needs to get to the goal state. The agent gets a penalty of -0.5 per-step, -1 to step on the water-block

(blue) and +1 for reaching the goal state. The model observes raw pixel images during learning.

(center) A Doom map using the VizDoom engine where the agent starts in a room and has to get
to another room to collect ammo (per-step penalty = -0.01, reward for reaching goal = +1). (right)
Sample screen-shots of the agent exploring the 3D maze.
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Figure 3: Average trajectory of the reward (left) over 100k steps for the grid-world maze. (right)
over 180k steps for the Doom map over multiple runs.

Kulkarni, T. D., Saeedi, A., Gautam, S., and Gershman, S. J. (2016). Deep Successor Reinforcement Learning. arXiv:1606.02396
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Deep Successor Reinforcement Learning

e The interesting property is that you do not need 0
rewards to learn: c . al

- ) \ Y "8 a1l —— DSR - Reward=1
= A random agent can be used to learn the o ! CV™ _ DSR-Reward=3

N ! _
encoder and the SR, but w can be left = L —— DSR-Reward=5
hed o -3 ; AT 8 I --- DQN - Reward=1
untouched. = oAt l:h-n";“:“f: ' --- DQN - Reward=3
: T 4 b}’.'i‘l‘;‘ul AVid --- DQN - Reward=>5

= When rewards are introduced (or changed), SRR L i Y R S

only w has to be adapted, while DQN would

400 o600 800 1000 1200 1400 1600 1800
have to re-learn all Q-values. Training steps

e This is the principle of latent learning in animal psychology: fooling around in an environment without a
goal allows to learn the structure of the world, what can speed up learning when a task is introduced.

e The SR is a cognitive map of the environment: learning task-unspecific relationships.

Kulkarni, T. D., Saeedi, A., Gautam, S., and Gershman, S. J. (2016). Deep Successor Reinforcement Learning. arXiv:1606.02396 34/36



Deep Successor Reinforcement Learning

e Note: the same idea was published by three different groups at the same time (preprint in 2016,
conference in 2017):

= Barreto A, Dabney W, Munos R, Hunt JJ, Schaul T, van Hasselt H, Silver D. (2016). Successor Features
for Transfer in Reinforcement Learning. arXiv:160605312.

= Kulkarni, T. D, Saeedi, A., Gautam, S., and Gershman, S. J. (2016). Deep Successor Reinforcement
Learning. arXiv:1606.02396.

= Zhang J, Springenberg JT, Boedecker J, Burgard W. (2016). Deep Reinforcement Learning with
Successor Features for Navigation across Similar Environments. arXiv:161205533.

e The (Barreto et al., 2016) is from Deepmind, so it tends to be cited more...
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Visual Semantic Planning using Deep Successor Representations

@ Visual Semantic Planninc ~»

Zhu Y, Gordon D, Kolve E, Fox D, Fei-Fei L, Gupta A, Mottaghi R, Farhadi A. (2017). Visual Semantic Planning using Deep Successor Representations. arXiv:170508080
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https://www.youtube.com/watch?v=_2pYVw6ATKo

