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1 - Summary of DRL



Overview of deep RL methods
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Overview of deep RL methods

Model based Model free e Model-free methods (DQN, A3C, DDPG, PPO, SAC)
are able to find optimal policies in complex MDPs
by just sampling transitions.
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e They suffer however from a high sample
complexity, i.e. they need ridiculous amounts of

= samples to converge.
e Model-based methods (I12A, Dreamer, MuZero) use
@ learned dynamics to predict the future and plan the
T e B consequences of an action.

e The sample complexity is lower, but learning a
good model can be challenging. Inference times
can be prohibitive.

Current Opinion in Neurobiology
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Deep RL is still very unstable

e Depending on initialization, deep RL networks may or may not converge (30% of runs converge to a worse
policy than a random agent).

e Careful optimization such as TRPO / PPO help, but not completely.

e You never know if failure is your fault (wrong network, bad hyperparameters, bug), or just bad luck.
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Source: https://www.alexirpan.com/2018/02/14/rl-hard.html
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Deep RL lacks generalization to different environments

Jacob Andreas X
@jacobandreas - Follow
Deep RL is popular because it's the only area in ML
where it's socially acceptable to train on the test set.

9:27 PM - Oct 28, 2017 O,

@ 628 @ Reply (2 Copy link

Read 13 replies

e As it uses neural networks, deep RL overfits its training data, i.e. the environment it is trained on.

e |f you change anything to the environment dynamics, you need to retrain from scratch.

e OpenAl Five collects 900 years of game experience per day on Dota 2: it overfits the game, it does not

learn how to play.

o Modify the map a little bit and everything is gone.
e But see Meta RL - RL*2 |ater.
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Classical methods sometimes still work better

e Model Predictive Control (MPC) is able to control
Mujoco robots much better than RL through

classical optimization techniques (e.g. iterative
LQR) while needing much less computations.

e |f you have a good physics model, do not use DRL.
Reserve it for unknown systems, or when using
noisy sensors (images).

e Genetic algorithms (CMA-ES) sometimes give
better results than RL to train policy networks.
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https://www.youtube.com/watch?v=uRVAX_sFT24

You cannot do that with deep RL (yet)

* What's new, Atlas?
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https://www.youtube.com/watch?v=fRj34o4hN4I

RL libraries

e keras—rL: many deep RL algorithms implemented directly in keras: DQN, DDQN, DDPG, CEM...

https://github.com/matthiasplappert/keras-rl

e OpenAI Baselines from OpenAl: A2C, ACER, ACKTR, DDPG, DQN, PPO, TRPO... Not maintained.

https://github.com/openai/baselines

e Stable baselines from Inria Flowers, a clean rewrite of OpenAl baselines including SAC and TD3.

https://github.com/hill-a/stable-baselines

e chainer—rlimplemented in Chainer: A3C, ACER, DQN, DDPG, PGT, PCL, PPO, TRPO.

https://github.com/chainer/chainerrl

e RL Mushroomis avery modular library based on Pytorch allowing to implement DQN and variants, DDPG,
SAC, TD3, TRPO, PPO.

https://github.com/MushroomRL/mushroom-rl

See https://blog.dataiku.com/on-choosing-a-deep-reinforcement-learning-library
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RL libraries

e Tensorforce implement in tensorflow: DQN and variants, A3C, DDPG, TRPO, PPO.

https://github.com/tensorforce/tensorforce

e Tensorflow Agents is officially supported by tensorflow: DQN, A3C, DDPG, TD3, PPO, SAC.

https://github.com/tensorflow/agents

e Coach from Intel Nervana also provides many state-of-the-art algorithms.

https://github.com/NervanaSystems/coach

Value Optimization Policy Optimization Imitation

@ ‘ Policy Gradient | | Actor Critic Behavioral Cloning
) ) () =
Q-Learning DQN

[ Clipped PPO ]

¥
Dueling DDQN o
Q-Ensembles ||  with PER [ et ] DDPG DDPE
with HER HAI: w“"’“"'"g“

Source: https://github.com/NervanaSystems/coach

11/48


https://github.com/tensorforce/tensorforce
https://github.com/tensorflow/agents
https://github.com/NervanaSystems/coach
https://github.com/NervanaSystems/coach

RL libraries

e rLLl1b is part of the more global ML framework Ray, which also includes Tune for hyperparameter
optimization.
It has implementations in both tensorflow and Pytorch.

All major model-free algorithms are implemented (DQN, Rainbow, A3C, DDPG, PPO, SAC), including their
distributed variants (Ape-X, IMPALA, TD3) but also model-based algorithms (Dreamer!)

https://docs.ray.io/en/master/rllib.html

OpenAl Multi-Agent / Policy Offline R L
Gym Hierarchical Serving Data (1) Application Support
Custom Algorithms RLIib Algorithms

— (2) Abstractions for RL

— (3) Distributed Execution

_
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https://docs.ray.io/en/master/rllib.html

RL libraries

e tianshou is arecent addition to the family. The implementation is based on pytorch and is very modular.
Allows for efficient distributed RL.

Algos: DQN+/DDPG/PPO/SAC, imitation learning, offline RL...
https://github.com/thu-ml/tianshou

Tramner

collector.collect () policy.update ()

Lal D SEND NN SEES CEES SENS SEN SENS SENS M Lal TN SENS NS SEES CEES SENS SENS SENS SEE S

-5’|. Eﬂ'-.-'-StEpiJ F'EI-__I:E-’l:] m.;:;.c]_e]_{}.
Env b Collector > Model
Batch Batch
puffer.add() |Batch Batch | P01 1CY-process tni)

policy.post process fni)

Bufter
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2 - Inverse RL - learning the reward function
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RL maximizes the reward function you give it

e RL is an optimization method: it maximizes the
‘ oastRUNGETS / P reward function that you provide it.

e |f you do not design the reward function correctly,
the agent may not do what you expect.

e In the Coast runners game, turbos provide small
rewards but respawn very fast: it is more optimal to

collect them repeatedly than to try to finish the
race.
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https://www.youtube.com/watch?v=tlOIHko8ySg

Reward functions need careful engineering

e Defining the reward function that does what you
T Deep Reinforcement Learning fOI’ DeXterOUS o Want becomes an ar't.

e RL algorithms work better with dense rewards than
sparse ones. It is tempting to introduce
intermediary rewards.

e You end up covering so many special cases that it
becomes unusable:

= Go as fast as you can but not in a curve, except
if you are on a closed circuit but not if it rains...

e Inthe OpenAl Lego stacking paper, it was perhaps harder to define the reward function than to implement
DDPG.

1 if stack(bglj,,s",ﬁﬁl,sm}
0.25 if _Iﬁ-lﬂﬂk{bilj,-ﬁp?ﬂnlj s12) ﬂgrasp{bgn,ap,sm e
0.125 if —u(stﬂck(by}, sl sPl, sB2) Vgraspl[bg},ﬂp,sm,sﬂﬂj} A reach(bl', s, sBL gB2)

() otherwise

H:E}

(5)

T{b?j,-ﬁp,-ﬁnljﬁng} L

Popoy, |., Heess, N,, Lillicrap, T., Hafner, R., Barth-Maron, G., Vecerik, M., et al. (2017). Data-efficient Deep Reinforcement Learning for Dexterous Manipulation. arXiv:1704.03073.
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https://www.youtube.com/watch?v=8QnD8ZM0YCo

Inverse Reinforcement Learning
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| e The goal of inverse RL is to learn from

: demonstrations (e.g. from humans) which reward

i function is maximized.

i e This is not imitation learning, where you try to learn
-------- g and reproduce actions.

e The goal if to find a parametrized representation of
the reward function:

(s) = 3 wi ils)

 When the reward function has been learned, you

http://www.miubig.cs.titech.ac.jp/modeling-risk-anticipation-and-defensive- can train a RL algorithm to find the optimal policy.
driving-on-residential-roads-using-inverse-reinforcement-learning/

Arora, S., and Doshi, P. (2019). A Survey of Inverse Reinforcement Learning: Challenges, Methods and Progress. arXiv:1806.06877 17/ 48
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3 - Intrinsic motivation and curiosity
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Intrinsic motivation and curiosity

e One fundamental problem of RL is its dependence on the reward function.

Credit: https://vimeo.com/felixsteger

e Human learning does not (only) rely on maximizing rewards or achieving
goals.

e Especially infants discover the world by playing, i.e. interacting with the
environment out of curiosity.

= What happens if | do that? Oh, that’s fun.

e This called intrinsic motivation: we are motivated by understanding the
world, not only by getting rewards.

 Rewards are internally generated.

e When rewards are sparse, the agent does not learn much

(but see successor representations) unless its random
exploration policy makes it discover rewards.

e The reward function is handmade, what is difficult in
realistic complex problems.

— P External Environment
Actions Sensations
Intarnal Environment .‘
l Critlc
Reward Signals
Dacisions ' States
RL Agent -]

“Organism”

Barto AG. (2013). Intrinsic Motivation and Reinforcement Learning In Intrinsically Motivated Learning in Natural and Artificial Systems. doi:10.1007/978-3-642-32375-1_2
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Intrinsic motivation and curiosity

What is intrinsically rewarding / motivating / fun? Mostly what has unexpected consequences.

= |f you can predict what is going to happen, it becomes boring.

= |[f you cannot predict, you can become curious and try to explore that action.

- . e The intrinsic reward (IR) of an action is defined as
Beginning of the game is a Found a new room

familiar state the sensory prediction error:

88838 +x01 s

00000 IR(st,at, St_|_1) — Hf(stya’t) o St—l—lH

0000000
0000000

where f(st, at) is a forward model predicting the
sensory consequences of an action.

Easy to predict sw1 - IR will be Hard to predict st+1 > IR will be

| | . . .
ow high e An agent maximizing the IR will tend to visit

unknown / poorly predicted states (exploration).

Source: https://medium.com/data-from-the-trenches/curiosity-driven-
learning-through-next-state-prediction-f7f4e2f592fa
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Intrinsic motivation and curiosity

e |s it a good idea to predict frames directly? e Moreover, they can be noisy and unpredictable,

 Frames are highly dimensional and there will without being particularly interesting.

always be a remaining error.

The importance of a good feature space

It's hard to predict the pixels directly

&

S Move left

Needs to predict (248*248)
61504 pixels!

eV
redicted s;,4

Source: Giphy

Source: https://medium.com/data-from-the-trenches/curiosity-driven-
learning-through-next-state-prediction-f7f4e2f592fa

e What can we do? As usual, predict in a latent space!
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Intrinsic curiosity module (ICM)

e The intrinsic curiosity module (ICM) learns to provide an intrinsic reward for a transition (st, a, 8t+1) by

comparing the predicted latent representation ¢(St_|_1) (using a forward model) to its “true” latent
representation ¢(S;11).

e The feature representation qb(st) Is trained using an inverse model predicting the action leading from s;

1O S¢+1.
) )
Ty i
T A
ICM _ ICM
/ \
/ \ A ~
Blsenn) st
5 P 1 \

Forward
Model 4 4
/’ -

(¢ |

—p| features
|
|
[
|
|
[
—p| features

ry + rei1 T Ty A+ St St+1

Pathak D, Agrawal P, Efros AA, Darrell T. (2017). Curiosity-driven Exploration by Self-supervised Prediction. arXiv:170505363. 29 /48



Intrinsic motivation and curiosity

“w) Curiosity Driven Exploration by Self-Supervised Prediction

Curiosity Driven Exploration
by Self-Supervised
Prediction

>

ICML 2017

Deepak Pathak, Pulkit Agrawal, Alexei Efros, Trevor Darrell
UC Berkeley


https://www.youtube.com/watch?v=J3FHOyhUn3A

Intrinsic motivation and curiosity

&) Curiosity-Driven LearninglA) ageatsekiilbting Witholtlbeking af ahy sedres 10 S 11y

04 1900
08500
P16100

Burda Y, Edwards H, Pathak D, Storkey A, Darrell T, Efros AA. 2018. Large-Scale Study of Curiosity-Driven Learning. arXiv:180804355. https://pathak22.github.io/large-scale-curiosity/


https://www.youtube.com/watch?v=l1FqtAHfJLI
https://pathak22.github.io/large-scale-curiosity/
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4 - Hierarchical RL - learning different action levels



Hierarchical RL - learning different action levels

e In all previous RL methods, the action space is fixed.

n u

 When you read a recipe, the actions are “Cut carrots”, “Boil water”, etc.

e But how do you perform these high-level actions? Break them into subtasks iteratively until you arrive to
muscle activations.

e Butitis not possible to learn to cook a boeuf bourguignon using muscle activations as actions.

Beef bourguignon

Cook beef Cut 4 carrots Cut onion
\\~J"h l""i%%‘%%%‘%%‘%%%%%‘%%%%%“lll

o

Put on table

Move right arm

Contract muscle X

Source: https://thegradient.pub/the-promise-of-hierarchical-reinforcement-learning/
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Meta-Learning Shared Hierarchies

e Sub-policies (options) can be trained to solve simple tasks (going left, right, etc).

e A meta-learner or controller then learns to call each sub-policy when needed, at a much lower frequency.

observation

L ]

- sub-policies

master policy

Frans, K., Ho, J., Chen, X., Abbeel, P, and Schulman, J. (2017). Meta Learning Shared Hierarchies. arXiv:1710.09767
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Meta-Learning Shared Hierarchies

Learning a Hierarchy

Activated
sub-policy:

https://openai.com/blog/learning-a-hierarchy/


https://www.youtube.com/watch?v=zkJmH4NlzPs
https://openai.com/blog/learning-a-hierarchy/

Meta-Learning Shared Hierarchies

Learning a Hierarchy

Activated
sub-policy:

https://openai.com/blog/learning-a-hierarchy/


https://www.youtube.com/watch?v=zkJmH4NlzPs
https://openai.com/blog/learning-a-hierarchy/

Hierarchical Reinforcement Learning
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HIRO: Nachum, O, Gu, S,, Lee, H., and Levine, S. (2018). Data-Efficient Hierarchical Reinforcement
Learning. arXiv:1805.08296.

HAC: Levy, A, Konidaris, G., Platt, R., and Saenko, K. (2019). Learning Multi-Level Hierarchies with
Hindsight. arXiv:1712.00948.
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Meta RL: Learning to learn

e Meta learning is the ability to reuse skills acquired on a set of tasks to quickly acquire new (similar) ones

(generalization).

multi-task reinforcement learning

learn tasks

perform tasks

meta reinforcement learning

Iearn to learn tasks

quickly learn

new task
o
P 4 g
Train tasks Test tasks
ML10 Pick and place Reaching Button press Window opening Pushing - -
- - - Drawer opening Door closing Shelf placing Sweep Lever pulling
Sweep into Drawer closing Dial turning Peg insertion side Basketball

Source: https://meta-world.github.io/
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Meta RL: Learning to learn

e Meta RL is based on the idea of fast and slow learning:

- 4 = Slow learning is the adaptation of weights in the NN.

» Fast learning is the adaptation to changes in the environment.

o A simple strategy developed concurrently by (Wang et al. 2016) and (Duan et
C al. 2016) is to have a model-free algorithm (e.g. A3C) integrate with a LSTM

3 I layer not only the current state s, but also the previous action a;_; and
I reward 7;.

e The policy of the agent becomes memory-guided: it selects an action
depending on what it did before, not only the state.

Reset the hidden state

associated with one MDP

Wang et al.. (2016). Learning to reinforcement learn. arXiv:161105763. 34 /48



Meta RL: Learning to learn

Reset the hidden state

Tral 1 Tral 2
associated with one MDP

e The algorithm is trained on a set of similar MDPs:

1. Select a MDP M.
2. Reset the internal state of the LSTM.

3. Sample trajectories and adapt the weights.
4. Repeat 1, 2 and 3.

Duan Y, Schulman J, Chen X, Bartlett PL, Sutskever |, Abbeel P. (2016). RL2: Fast Reinforcement Learning via Slow Reinforcement Learning. arXiv:161102779.

35/48



Meta RL: Learning to learn

e The meta RL can be be trained an a multitude of 2-armed bandits, each giving a reward of 1 with
probability pand 1 — p.

e Leftis a classical bandit algorithm, right is the meta bandit:

Trial: 1 Trial: 1

Source: https://hackernoon.com/learning-policies-for-learning-policies-meta-reinforcement-learning-rI%C2%B2-in-tensorflow-b15b592a2ddf

e The meta bandit has learned that the best strategy for any 2-armed bandit is to sample both actions
randomly at the beginning and then stick to the best one.

e The meta bandit does not learn to solve each problem, it learns how to solve them.
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Model-Based Meta-Reinforcement Learning for Flight with Suspended
Payloads

G , Model-Based Meta-Reinforcement Learning for Elight with Suspended Payloads,

r_—

——— | Share

Belkhale et al. (2021). Model-Based Meta-Reinforcement Learning for Flight with Suspended Payloads. IEEE Robot Autom Lett. https://sites.google.com/view/meta-rl-for-flight
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References

Meta RL: Wang JX, Kurth-Nelson Z, Tirumala D, Soyer H, Leibo JZ, Munos R, Blundell C, Kumaran D,
Botvinick M. (2016). Learning to reinforcement learn. arXiv:161105763.

RLZ Duan Y, Schulman J, Chen X, Bartlett PL, Sutskever |, Abbeel P. 2016. RL2: Fast Reinforcement
Learning via Slow Reinforcement Learning. arXiv:1611027/79.

MAML: Finn C, Abbeel P, Levine S. (2017). Model-Agnostic Meta-Learning for Fast Adaptation of Deep
Networks. arXiv:170303400.

PEARL: Rakelly K, Zhou A, Quillen D, Finn C, Levine S. (2019). Efficient Off-Policy Meta-Reinforcement
Learning via Probabilistic Context Variables. arXiv:190308254.

POET: Wang R, Lehman J, Clune J, Stanley KO. (2019). Paired Open-Ended Trailblazer (POET): Endlessly

Generating Increasingly Complex and Diverse Learning Environments and Their Solutions.
arXiv:1901701753.

MetaGenRL: Kirsch L, van Steenkiste S, Schmidhuber J. (2020). Improving Generalization in Meta
Reinforcement Learning using Learned Objectives. arXiv:191004098.

Botvinick M, Ritter S, Wang JX, Kurth-Nelson Z, Blundell C, Hassabis D. (2019). Reinforcement Learning,
Fast and Slow. Trends in Cognitive Sciences 23:408-422. doi:10.1016/j.tics.2019.02.006

38 /48



References

e https://lilianweng.github.io/lil-log/2019/06/23/meta-reinforcement-learning.htmi

e https://hackernoon.com/learning-policies-for-learning-policies-meta-reinforcement-learning-rl%C2%B2-in-
tensorflow-b15b592a2ddf

e https://towardsdatascience.com/learning-to-learn-more-meta-reinforcement-learning-f0cc92c¢178c1

e https://eng.uber.com/poet-open-ended-deep-learning/

39/48


https://lilianweng.github.io/lil-log/2019/06/23/meta-reinforcement-learning.html
https://hackernoon.com/learning-policies-for-learning-policies-meta-reinforcement-learning-rl%C2%B2-in-tensorflow-b15b592a2ddf
https://towardsdatascience.com/learning-to-learn-more-meta-reinforcement-learning-f0cc92c178c1
https://eng.uber.com/poet-open-ended-deep-learning/

6 - Offline RL



Offline RL

e Even off-policy algorithms need to interact with the environment: the behavior policy is e-soft around the
learned policy.

e Isit possible to learn purely offline from recorded transitions using another policy (experts)? Data
efficiency.

e This would bring safety: the agent would not explore dangerous actions.

Reinforcement Learning with Online Interactions
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Online Agent 57
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Source: https://ai.googleblog.com/2020/04/an-optimistic-perspective-on-offline.html
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D4RL

e D4RL (https://sites.google.com/view/d4rl/home) provides offline data recorded using expert policies to
test offline algorithms.

Adroit FrankaKitchen CARLA
https://ai.googleblog.com/2020/08/tackling-open-challenges-in-offline.html
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Behavioral cloning

e As no exploration is allowed, the model is limited by the quality of the data: if the acquisition policy is
random, there is not much to hope.

e |If we have already a good policy, but slow or expensive to compute, we could try to transfer it to a fast
neural network.

o If the policy is a human expert, it is called learning from demonstrations (Ifd) or imitation learning.

e The simplest approach to offline RL is behavioral cloning: simply supervised learning of (s, a) pairs...

Recorded
steering
wheel angleh Adjust for shift Desired steering command
and rotation |
.-" -, Network
Left camera ‘ computed
§ . ' | | steering Y
f ™ Random shift . - command o o
hEentercarnera.J > od rotation | NN - —
Right camera ‘ A

Back propagation _ Eror
weight adjustment

M Bojarski, D Del Testa, D Dworakowski, B Firner (2016). End to end learning for self-driving cars. arXiv:1604.07316
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Dave2 : NVIDIA's self-driving car

<2 NVIDIA Autonomous Car
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Distribution shift

e The main problem in offline RL is the distribution shift: what if the trained policy assigns a hon-zero
probability to a (s, a) pair that is outside the training data?

e Most offline RL methods are conservative methods, which try to learn policies staying close to the known
distribution of the data. Examples:

= Batch-Contrained deep Q-learning (model-free), MOREL (model-based)...

Qutput policy
Output policy Tout
MTout

T Policy
Dataset Optimizer

Dataset | |
- x__ ® 0 {'-' } = data support
Learn MDP — | p-mDP M = unknown
Offline Reinforcement Learning M p 0 = known

(a) (b)

Source: https://kenshinhm. tistory.com/37
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Decision transformer

e Transformers are the new SotA method to transform sequences into sequences.

 Why not sequences of states into sequences of actions?

e The decision transformer takes complete offline trajectories as inputs (s, a, r, s...) and predicts
autoregressively the next action.

; ; we=  Decision Transformer (Ours) w===_TD Learning === Behavior Cloning
I
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Source: https://arxiv.org/abs/2106.01345
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Transformers as World models

xo 70 71 > Ts—1
do d; —> ds_1
E
. < (s o 1 ot
| | G | | G G | |
1 K A1 K A1 ~K
:zﬂ, , 29 | @0 —)'l 213,27 1 @1 —Fl zZ, y 2, | Qs
————— A oA g A
D
D D
D ¥
Zo 1 Ts
T T iy
“ YV, “ v, “
v " "
t=20 t=1 t==s

Micheli, V., Alonso, E., & Fleuret, F. (2022). Transformers are Sample Efficient World Models (arXiv:2209.00588). https://doi.org/10.48550/arXiv.2209.00588
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